Ethics, consent and permission
The study was approved by the Ethics Committee of the University Medical Centre of Freiburg (vote # 268/15) on 29th June 2015 and registered at the German Register for Clinical Trials (DRKS00008924). This study adheres to CONSORT guidelines.
Study design and patient population
After obtaining written informed consent from all individual participants included in the study, we studied respiratory mechanics, hemodynamic variables and regional ventilation in 60 consecutive patients with American Society of Anesthesiologists (ASA) physical status I-III, undergoing otorhinolaryngeal surgery at the Medical Center of the University of Freiburg, Germany. The study was performed as a prospective parallel arm, randomized, controlled trial with an allocation ratio of 1:1. Randomization was carried out in blocks of 30 by a computer generated allocation sequence. Participiants were enrolled and assigned to the interventions by a study related anesthetist. Exclusion criteria were ASA physical status > III, age < 18 years, pregnancy, emergency procedure, cardiac pacemaker and other active implants, obesity (BMI ≥ 30 kg·m-2) history of pulmonary disease, laparoscopic surgery or refusal of participation.
Procedure
After primary recruitment and preoperative evaluation, the patients received routine monitoring (electrocardiography, SpO2, noninvasive blood pressure measurement; Infinity Delta XL, Dräger Medical, Lübeck, Germany). After preoxygenation to an expiratory fraction of oxygen of 0.8, anesthesia was induced and maintained as total intravenous anesthesia with a continuous infusion of propofol (Propofol 1%, Fresenius Kabi, Bad Homburg, Germany; target controlled infusion, effect site target concentration for induction: 6-8 µg·mL-1, target concentration for maintenance: 3-5 µg·mL-1, Agilia, Schnider Model; Fresenius Kabi) and remifentanil (TEVA GmbH, Ulm, Germany; induction: 1-2 µg·kg-1, maintenance: 0.15-0.3 µg·kg-1·min-1). During the study protocol, a Bispectral Index™ (BIS™) monitoring (Medtronic, Minneapolis, USA) was used as an additional monitor of depth of anesthesia (BIS value target 40-60). Tracheal intubation was facilitated with 0.15 mg·kg-1 predicted body weight (PBW) [23] cisatracurium (Fresenius Kabi). Potential hypotension (defined as mean arterial pressure < 65 mmHg) was treated with a continuous infusion of norepinephrine (0.03-0.2 µg·kg-1·min-1). Volume requirements were addressed individually according to clinical judgement with a crystalloid solution (Jonosteril; Fresenius Kabi). For tracheal intubation, we used tracheal tubes with low pressure cuffs (internal diameter of 7.0-7.5 mm for women and 8.0 mm for men; Mallinckrodt Hallo-Contour; Covidien, Neustadt an der Donau, Germany). All patients were ventilated in the volume-controlled mode with a tidal volume (VT) of 7 mL·kg-1 PBW. Ventilation frequency was set to maintain an end-tidal carbon dioxide partial pressure between 35 and 40 mmHg. The initial PEEP was set to 5 cmH2O, according to our local standard. Following baseline measurements, the randomization was disclosed. In the control group, this PEEP was maintained for the whole procedure, in the intervention group, the PEEP was adjusted dynamically according to the recommendations resulting from the intratidal compliance profile analysis (see below).
Gliding-SLICE
To calculate nonlinear intratidal CRS profiles of via the gliding-SLICE method, we chose a number of 21 equidistant slices as a tradeoff between calculation effort and reasonable resolution. The resulting intratidal compliance curves were classified into six different compliance profiles, as described earlier [21, 24, 25]. In brief, a second order polynomial was fit into the compliance-volume curve, and the resulting segment of a parabola was assumed to represent the compliance-volume curve in a filtered form. If the segment showed an increase of more than 20% of the compliance maximum, the profile was classified as containing an increasing part. A segment decreasing by more than 20% of the compliance maximum was classified as containing a decreasing part. A segment containing the angular point of the parabola was classified as containing the horizontal part. A compliance profile with less than 20% change was classified as horizontal (Fig. 1) [22]. The Decision Support Systems suggested a PEEP increase of 2 cmH2O in case of a merely increasing compliance profile, 1 cmH2O in case of an increasing compliance profile with horizontal component, a PEEP decrease of 2 cmH2O in case of a merely decreasing compliance profile and 1 cmH2O in case of a decreasing compliance profile with horizontal component. A merely horizontal compliance profile resulted in the suggestion to maintain PEEP as it is.
Electrical impedance tomography
Regional ventilation was measured via electrical impedance tomography (EIT, PulmoVista 500, Dräger Medical) every 10 minutes for a duration of 2 minutes. EIT recordings were offline evaluated using software developed in Matlab (MATLAB R2014a, The Mathworks Inc., Natick, MA, USA). As a first step, the relevant lung areas were determined for each patient by applying the lung area estimation method [26, 27] to the raw EIT data. Therefore, functional region of interest was selected by deleting all pixels with impedance change smaller than 20% of maximum tidal impedance change. After mirroring the deleted pixels, cardiac area was removed. The obtained lung area was then applied to all recorded raw EIT images. After this preprocessing, functional impedance images were generated. This was done by subtracting the frames corresponding to the start of inspiration from the frames corresponding to the end of inspiration. Thus, these functional images (f-EIT) represent the distribution of the tidal volume for each breath. To assess potential changes in regional ventilation, tidal variation as well as a gain and loss calculation was performed. Gain and loss calculation is based on subtracting functional impedance images of baseline measurements from the functional impedance images of the recording under investigation. Subsequently, the resulting differential images were split into ventral and dorsal parts and the number of positive (‘gain’) and negative (‘loss’) pixels were calculated for each such region. Considering the difference between the calculated gain and loss (net impedance difference) ultimately provides a measure for changes in regional ventilation. If this difference was positive, we assumed an increase in regional ventilation in the respective lung area whereas a negative difference indicates a decrease in regional ventilation [28]. Tidal variation was calculated as the fraction of impedance values in ventral (TVv) and dorsal areas (TVd) for all functional impedance images under consideration using Equation 1 (see Supplementary Files)
where xi,v are the impedance values in the ventral region, xi,d the impedance values in the dorsal region and xi the sum of all impedance values of the functional impedance image under consideration.
End points and data collection
Frequencies of nonlinear intratidal CRS profiles (measured using the gliding-SLICE method) was the primary endpoint of this study. Secondary endpoints were regional ventilation (ventral and dorsal ventilation distribution, ventral and dorsal gain and loss), the respiratory system variables [peak inspiratory pressure (PIP), PPlat, mean tracheal pressure (Pmean), PEEP] and hemodynamic variables [systolic blood pressure (BPsys), diastolic blood pressure (BPdias), heart rate and mean arterial pressure (MAP)].
Sample size calculation and statistical evaluation
There are no data available concerning the variance of frequencies of compliance profiles. Therefore, we based our sample size calculation on estimation of a general standardized effect size e, being the quotient of differences in means and SD. With regard to our approach, adapting PEEP according to the measured compliance profile, we assumed a large effect size and therefore chose e = 0.8 [29]. In regard to the trial design (unpaired test conditions) and an assumed e of 0.8, 50 patients were required to reach a test power of 0.8 with a desired level of significance of 0.05.
To compensate for potential incomplete data sets, a total of 60 patients were recruited. Data are presented as mean (SD). Differences between the two groups were assessed with unpaired Students t-test, respectively. Statistical significance was considered for p < 0.05. Preceding, Shapiro-Wilk tests were used to confirm that the assumed normal distribution cannot be rejected. For not normally distributed data, differences between the two groups were assessed with Mann-Whitney U tests.