In this paper, incorporating the quaternion matrix framework, the logarithmic norm of quaternion matrices is employed to approximate rank. Unlike conventional sparse representation techniques for matrices, which treat RGB channels separately, quaternion-based methods maintain image structure by representing color images within a pure quaternion matrix. Leveraging the logarithmic norm, factorization and truncation techniques can be applied for proficient image recovery. Optimization of these approaches is facilitated through an alternate minimization framework, supplemented by meticulous mathematical scrutiny ensuring convergence. Finally, some numerical examples are used to demonstrate the effectiveness of the proposed algorithms.