[1] OECD/FAO, OECD-FAO Agricultural Outlook 2019-2028, 2019th ed., OECD Publishing, Paris, 2019. https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2019-2028_agr_outlook-2019-en.
[2] Q. Li, W. Du, D. Liu, Perspectives of microbial oils for biodiesel production, Appl. Microbiol. Biotechnol. 80 (2008) 749–756. doi:10.1007/s00253-008-1625-9.
[3] I.R. Sitepu, L.A. Garay, R. Sestric, D. Levin, D.E. Block, J.B. German, K.L. Boundy-Mills, Oleaginous yeasts for biodiesel: Current and future trends in biology and production, Biotechnol. Adv. 32 (2014) 1336–1360. doi:10.1016/j.biotechadv.2014.08.003.
[4] S. Papanikolaou, G. Aggelis, Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production, Eur. J. Lipid Sci. Technol. 113 (2011) 1031–1051. doi:10.1002/ejlt.201100014.
[5] I.A. Vasiliadou, S. Bellou, A. Daskalaki, L. Tomaszewska- Hetman, C. Chatzikotoula, B. Kompoti, S. Papanikolaou, D. Vayenas, S. Pavlou, G. Aggelis, Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: Modelling and trials with Yarrowia lipolytica, J. Clean. Prod. 200 (2018) 1111–1129. doi:https://doi.org/10.1016/j.jclepro.2018.07.187.
[6] C. Ratledge, Microbial Lipids, in: Biotechnol. Set, Wiley-VCH Verlag GmbH, 2001: pp. 133–197. doi:10.1002/9783527620999.ch4g.
[7] J.C. Quinn, R. Davis, The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling, Bioresour. Technol. 184 (2015) 444–452. doi:https://doi.org/10.1016/j.biortech.2014.10.075.
[8] R. Davis, A. Aden, P.T. Pienkos, Techno-economic analysis of autotrophic microalgae for fuel production, Appl. Energy. 88 (2011) 3524–3531. doi:https://doi.org/10.1016/j.apenergy.2011.04.018.
[9] D.L. Sills, V. Paramita, M.J. Franke, M.C. Johnson, T.M. Akabas, C.H. Greene, J.W. Tester, Quantitative Uncertainty Analysis of Life Cycle Assessment for Algal Biofuel Production, Environ. Sci. Technol. 47 (2013) 687–694. doi:10.1021/es3029236.
[10] I. Sitepu, T. Selby, T. Lin, S. Zhu, K. Boundy-Mills, Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species, J Ind Microbiol Biotechnol. (2014). doi:10.1007/s10295-014-1447-y.
[11] E.E. Karamerou, C. Webb, Cultivation modes for microbial oil production using oleaginous yeasts – A review, Biochem. Eng. J. 151 (2019) 107322. doi:https://doi.org/10.1016/j.bej.2019.107322.
[12] S. Parsons, M.J. Allen, C.J. Chuck, Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability, Bioresour. Technol. 303 (2020) 122862. doi:https://doi.org/10.1016/j.biortech.2020.122862.
[13] A. Patel, N. Arora, J. Mehtani, V. Pruthi, P.A. Pruthi, Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production, Renew. Sustain. Energy Rev. 77 (2017) 604–616. doi:https://doi.org/10.1016/j.rser.2017.04.016.
[14] F. Whiffin, F. Santomauro, C.J. Chuck, Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose, Biofuels, Bioprod. Biorefining. 10 (2016) 316–334. doi:https://doi.org/10.1002/bbb.1641.
[15] S.M. Moni, R. Mahmud, K. High, M. Carbajales-Dale, Life cycle assessment of emerging technologies: A review, J. Ind. Ecol. 24 (2020) 52–63. doi:10.1111/jiec.12965.
[16] X. Zhao, C. Hu, S. Wu, H. Shen, Z.K. Zhao, Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies, J. Ind. Microbiol. Biotechnol. 38 (2010) 627–632. doi:10.1007/s10295-010-0808-4.
[17] J. Pan, M. Kwak, J. Rhee, High density cell culture ofRhodotorula glutinis using oxygen-enriched air, Biotechnol. Lett. 8 (1986) 715–718. doi:10.1007/BF01032568.
[18] J. Lin, H. Shen, H. Tan, X. Zhao, S. Wu, C. Hu, Z.K. Zhao, Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients, J. Biotechnol. 152 (2011) 184–188. doi:http://dx.doi.org/10.1016/j.jbiotec.2011.02.010.
[19] K. Qiao, T.M. Wasylenko, K. Zhou, P. Xu, G. Stephanopoulos, Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism, Nat. Biotechnol. 35 (2017) 173–177. doi:10.1038/nbt.3763.
[20] L. Qin, L. Liu, A.-P. Zeng, D. Wei, From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts, Bioresour. Technol. 245 (2017) 1507–1519. doi:10.1016/j.biortech.2017.05.163.
[21] H.U. Cho, J.M. Park, Biodiesel production by various oleaginous microorganisms from organic wastes, Bioresour. Technol. 256 (2018) 502–508. doi:https://doi.org/10.1016/j.biortech.2018.02.010.
[22] A. Patel, F. Mikes, L. Matsakas, An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms, Molecules. 23 (2018). doi:10.3390/molecules23071562.
[23] E.E. Karamerou, C. Webb, Cultivation modes for microbial oil production using oleaginous yeasts – A review, Biochem. Eng. J. 151 (2019) 107322. doi:https://doi.org/10.1016/j.bej.2019.107322.
[24] E.E. Karamerou, C. Theodoropoulos, C. Webb, Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis, Eng. Life Sci. 17 (2017). doi:10.1002/elsc.201600073.
[25] Y. Cui, J.W. Blackburn, Y. Liang, Fermentation optimization for the production of lipid by Cryptococcus curvatus: Use of response surface methodology, Biomass and Bioenergy. 47 (2012) 410–417. doi:10.1016/j.biombioe.2012.09.017.
[26] X. Zhao, X. Kong, Y. Hua, B. Feng, Z. Zhao, Medium optimization for lipid production through co‐fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi, Eur. J. Lipid Sci. Technol. 110 (2008) 405–412. doi:10.1002/ejlt.200700224.
[27] V. Béligon, L. Poughon, G. Christophe, A. Lebert, C. Larroche, P. Fontanille, Validation of a predictive model for fed-batch and continuous lipids production processes from acetic acid using the oleaginous yeast Cryptococcus curvatus, Biochem. Eng. J. 111 (2016) 117–128. doi:http://dx.doi.org/10.1016/j.bej.2016.01.016.
[28] S. Parsons, F. Abeln, M.C. McManus, C.J. Chuck, Techno-economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty, J. Chem. Technol. Biotechnol. 94 (2019) 701–711. doi:10.1002/jctb.5811.
[29] C.R. Soccol, C.J. Dalmas Neto, V.T. Soccol, E.B. Sydney, E.S.F. da Costa, A.B.P. Medeiros, L.P.D.S. Vandenberghe, Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study, Bioresour. Technol. 223 (2017) 259–268. doi:10.1016/j.biortech.2016.10.055.
[30] G.-X. Qi, C. Huang, X.-F. Chen, L. Xiong, C. Wang, X.-Q. Lin, S.-L. Shi, D. Yang, X.-D. Chen, Semi-pilot Scale Microbial Oil Production by Trichosporon cutaneum Using Medium Containing Corncob Acid Hydrolysate, Appl. Biochem. Biotechnol. 179 (2016) 625–632. doi:10.1007/s12010-016-2019-6.
[31] F. Abeln, C.J. Chuck, Achieving a high-density oleaginous yeast culture: Comparison of four processing strategies using Metschnikowia pulcherrima, Biotechnol. Bioeng. 116 (2019) 3200–3214. doi:10.1002/bit.27141.
[32] A.A. Koutinas, A. Chatzifragkou, N. Kopsahelis, S. Papanikolaou, I.K. Kookos, Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production, Fuel. 116 (2014) 566–577. http://www.scopus.com/inward/record.url?eid=2-s2.0-84884323183&partnerID=40&md5=ec2d516d91c2dee1f54242e94adc1f44.
[33] T. Braunwald, W.T. French, W. Claupein, S. Graeff-Hönninger, Economic Assessment of microbial Biodiesel Production Using Heterotrophic Yeasts, Int. J. Green Energy. (2014) null-null. doi:10.1080/15435075.2014.940957.
[34] S. Parsons, F. Abeln, M.C. McManus, C.J. Chuck, Techno-economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty, J. Chem. Technol. Biotechnol. 94 (2019) 701–711. doi:10.1002/jctb.5811.
[35] Indexmundi, (2019). https://www.indexmundi.com/ (accessed December 15, 2019).
[36] A.D. Jones, K.L. Boundy-Mills, G.F. Barla, S. Kumar, B. Ubanwa, V. Balan, Microbial Lipid Alternatives to Plant Lipids BT - Microbial Lipid Production: Methods and Protocols, in: V. Balan (Ed.), Springer New York, New York, NY, 2019: pp. 1–32. doi:10.1007/978-1-4939-9484-7_1.
[37] C. Ratledge, Z. Cohen, Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?, Lipid Technol. 20 (2008) 155–160. doi:10.1002/lite.200800044.
[38] A. Yousuf, M.R. Khan, M.A. Islam, Z.A. Wahid, D. Pirozzi, Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis, Biotechnol. Lett. 39 (2017) 13–23. doi:10.1007/s10529-016-2217-x.
[39] P.M. Doran, Bioprocess Engineering Principles, Elsevier Science, 1995.
[40] R.J. Davies, Yeast oil from cheese whey - Process Development, in: R.S. Moreton (Ed.), Single Cell Oil, Longman Scientific & Technical, 1988: pp. 99–143.
[41] R.G. Harrison, P.W. Todd, S.R. Rudge, D.P. Petrides, Bioseparations Science and Engineering (2nd Edition), (2015). https://app.knovel.com/hotlink/toc/id:kpBSEE0004/bioseparations-science/bioseparations-science.
[42] Ι. Κούκος, Εισαγωγή στο σχεδιασμό χημικών εργιστασίων, 1st ed., Tziola, 2009. https://www.bookworld.gr/gr/book/bkid/235457/eisagogi-sto-schediasmo-chimikon-ergostasion.
[43] D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, D. Dudgeon, Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, United States, 2011. doi:10.2172/1013269.
[44] R.E. west M.S. Peters, K.D. Timmerhaus, Equipment Costs - Plant Design and Economics for Chemical Engineers, (2003). http://www.mhhe.com/engcs/chemical/peters/data/ (accessed December 12, 2019).
[45] R. Turton, Analysis, Synthesis and Design of Chemical Processes, Third Edition, Prentice Hall, 2008.
[46] H.W. Blanch, Biochemical engineering, Boca Raton, Fla. , Boca Raton, Fla. , 1997.
[47] G.D. Ulrich, A guide to chemical engineering process design and economics., New York , New York , 1984.
[48] J.P.F. Vieira, J.L. Ienczak, P.S. Costa, C.E. V Rossell, T.T. Franco, J.G.C. Pradella, Single cell oil production integrated to a sugarcane-mill: Conceptual design, process specifications and economic analysis using molasses as raw material, Ind. Crops Prod. 89 (2016) 478–485. doi:https://doi.org/10.1016/j.indcrop.2016.05.046.
[49] N. Bonatsos, C. Marazioti, E. Moutousidi, A. Anagnostou, A. Koutinas, I.K. Kookos, Techno-economic analysis and life cycle assessment of heterotrophic yeast-derived single cell oil production process, Fuel. 264 (2020) 116839. doi:https://doi.org/10.1016/j.fuel.2019.116839.
[50] L. Drévillon, M. Koubaa, J.-M. Nicaud, E. Vorobiev, Cell disruption pre-treatments towards an effective recovery of oil from Yarrowia lipolytica oleaginous yeast, Biomass and Bioenergy. 128 (2019). doi:10.1016/j.biombioe.2019.105320.
[51] Global Petrol Prices website, (2019). https://www.globalpetrolprices.com/electricity_prices/ (accessed December 1, 2019).
[52] H.M.R. Özüdoğru, M. Nieder-Heitmann, K.F. Haigh, J.F. Görgens, Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production, Ind. Crops Prod. 133 (2019) 259–268. doi:https://doi.org/10.1016/j.indcrop.2019.03.015.
[53] M. Nieder-Heitmann, K.F. Haigh, J.F. Görgens, Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses, Bioresour. Technol. 262 (2018) 159–168. doi:https://doi.org/10.1016/j.biortech.2018.04.075.
[54] S.S. Tchakouteu, N. Kopsahelis, A. Chatzifragkou, O. Kalantzi, N.G. Stoforos, A.A. Koutinas, G. Aggelis, S. Papanikolaou, Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: Adaptation dynamics and lipid production, Eng. Life Sci. 17 (2017) 237–248. doi:10.1002/elsc.201500125.
[55] A. Moustogianni, S. Bellou, I.-E. Triantaphyllidou, G. Aggelis, Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non-aseptic conditions, Biotechnol. Bioeng. 112 (2015) 827–831. doi:10.1002/bit.25482.
[56] F. Santamauro, F. Whiffin, R. Scott, C. Chuck, Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources, Biotechnol. Biofuels. 7 (2014) 34. http://www.biotechnologyforbiofuels.com/content/7/1/34.
[57] I.M. Banat, P. Nigam, D. Singh, R. Marchant, A.P. McHale, Review: Ethanol production at elevated temperatures and alcohol concentrations: Part I – Yeasts in general, World J. Microbiol. Biotechnol. 14 (1998) 809–821. doi:10.1023/A:1008802704374.
[58] R. Davis, C. Kinchin, J. Markham, E. Tan, L. Laurens, D. Sexton, D. Knorr, P. Schoen, J. Lukas, Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products, United States, 2014. doi:10.2172/1159351.
[59] T. Andlid, C. Larsson, C. Liljenberg, I. Marison, L. Gustafsson, Enthalpy content as a function of lipid accumulation in Rhodotorula glutinis, Appl. Microbiol. Biotechnol. 42 (1995) 818–825. http://www.scopus.com/inward/record.url?eid=2-s2.0-0028930674&partnerID=40&md5=e4b15ab74be77319db33a27f5ad1bcf7.
[60] J.L. Couture, R. Geyer, J.O. Hansen, B. Kuczenski, M. Øverland, J. Palazzo, C. Sahlmann, H. Lenihan, Environmental Benefits of Novel Nonhuman Food Inputs to Salmon Feeds, Environ. Sci. Technol. 53 (2019) 1967–1975. doi:10.1021/acs.est.8b03832.
[61] X.F. Huang, Y. Shen, H.J. Luo, J.N. Liu, J. Liu, Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid, Bioresour Technol. 247 (2018) 395–401. doi:10.1016/j.biortech.2017.09.096.
[62] T. Cajka, L.A. Garay, I.R. Sitepu, K.L. Boundy-Mills, O. Fiehn, Multiplatform mass spectrometry-based approach identifies extracellular glycolipids of the yeast Rhodotorula babjevae UCDFST 04-877, J. Nat. Prod. 79 (2016) 2580–2589. doi:10.1021/acs.jnatprod.6b00497.
[63] X.-F. Huang, Y.-H. Wang, Y. Shen, K.-M. Peng, L.-J. Lu, J. Liu, Using non-ionic surfactant as an accelerator to increase extracellular lipid production by oleaginous yeast Cryptococcus curvatus MUCL 29819, Bioresour. Technol. 274 (2019) 272–280. doi:10.1016/j.biortech.2018.11.100.
[64] R. Ledesma-Amaro, R. Dulermo, X. Niehus, J.-M. Nicaud, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids, Metab. Eng. 38 (2016) 38–46. doi:https://doi.org/10.1016/j.ymben.2016.06.004.
[65] H. Liu, C. Yu, D. Feng, T. Cheng, X. Meng, W. Liu, H. Zou, M. Xian, Production of extracellular fatty acid using engineered Escherichia coli, Microb. Cell Fact. 11 (2012) 41. doi:10.1186/1475-2859-11-41.
[66] B.M. Dolman, F. Wang, J.B. Winterburn, Integrated production and separation of biosurfactants, Process Biochem. 83 (2019) 1–8. doi:https://doi.org/10.1016/j.procbio.2019.05.002.
[67] X. Yang, G. Jin, Z. Gong, H. Shen, Y. Song, F. Bai, Z.K. Zhao, Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi, Bioresour. Technol. 158 (2014) 383–387. doi:10.1016/j.biortech.2014.02.121.
[68] X. Yang, G. Jin, Z. Gong, H. Shen, F. Bai, Z.K. Zhao, Recycling microbial lipid production wastes to cultivate oleaginous yeasts, Bioresour. Technol. 175 (2015) 91–96. doi:10.1016/j.biortech.2014.10.020.
[69] S. Papanikolaou, L. Muniglia, I. Chevalot, G. Aggelis, I. Marc, Yarrowia lipolytica as a potential producer of citric acid from raw glycerol, J Appl Microbiol. 92 (2002) 737–744.
[70] L. Moeller, B. Strehlitz, A. Aurich, A. Zehnsdorf, T. Bley, Optimization of Citric Acid Production from Glucose by Yarrowia lipolytica, Eng. Life Sci. 7 (2007) 504–511. doi:10.1002/elsc.200620207.
[71] E.E. Karamerou, C. Theodoropoulos, C. Webb, A biorefinery approach to microbial oil production from glycerol by Rhodotorula glutinis, Biomass and Bioenergy. 89 (2016) 113–122. doi:http://dx.doi.org/10.1016/j.biombioe.2016.01.007.
[72] K.S.T. Souza, R.F. Schwan, D.R. Dias, Lipid and citric acid production by wild yeasts grown in glycerol, J. Microbiol. Biotechnol. 24 (2014) 497–506. doi:10.4014/jmb.1310.10084.
[73] A.M. Kot, S. Błażejak, A. Kurcz, I. Gientka, M. Kieliszek, Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries, Appl. Microbiol. Biotechnol. (2016) 1–15. doi:10.1007/s00253-016-7611-8.
[74] C. Saenge, B. Cheirsilp, T.T. Suksaroge, T. Bourtoom, Efficient Concomitant Production of Lipids and Carotenoids by Oleaginous Red Yeast Rhodotorula glutinis Cultured in Palm Oil Mill Effluent and Application of Lipids for Biodiesel Production, Biotechnol. Bioprocess Eng. 16 (2011) 23–33. doi:10.1007/s12257-010-0083-2.
[75] T. Chantasuban, F. Santomauro, D. Gore-Lloyd, S. Parsons, D. Henk, R.J. Scott, C. Chuck, Elevated production of the aromatic fragrance molecule, 2-phenylethanol, using Metschnikowia pulcherrima through both de novo and ex novo conversion in batch and continuous modes, J. Chem. Technol. Biotechnol. 93 (2018) 2118–2130. doi:10.1002/jctb.5597.
[76] C. Li, K.L. Ong, X. Yang, C.S.K. Lin, Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control, Chem. Eng. J. 371 (2019) 804–812. doi:10.1016/j.cej.2019.04.092.
[77] Y. Cui, Y. Liang, Sweet sorghum syrup as a renewable material for microbial lipid production, Biochem. Eng. J. 93 (2015) 229–234. doi:https://doi.org/10.1016/j.bej.2014.09.013.
[78] M.-H. Cheng, H. Huang, B.S. Dien, V. Singh, The costs of sugar production from different feedstocks and processing technologies, Biofuels, Bioprod. Biorefining. 13 (2019) 723–739. doi:10.1002/bbb.1976.
[79] R. de O. Bordonal, J.L.N. Carvalho, R. Lal, E.B. de Figueiredo, B.G. de Oliveira, N. La Scala, Sustainability of sugarcane production in Brazil. A review, Agron. Sustain. Dev. 38 (2018) 13. doi:10.1007/s13593-018-0490-x.
[80] M. Uriarte, C.B. Yackulic, T. Cooper, D. Flynn, M. Cortes, T. Crk, G. Cullman, M. McGinty, J. Sircely, Expansion of sugarcane production in São Paulo, Brazil: Implications for fire occurrence and respiratory health, Agric. Ecosyst. Environ. 132 (2009) 48–56. doi:https://doi.org/10.1016/j.agee.2009.02.018.
[81] S. Barros, USDA GAIN Report - Brazil Sugar Annual, (2019). https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Sugar Annual_Sao Paulo ATO_Brazil_4-15-2019.pdf (accessed December 12, 2019).
[82] Raizen annual report 2018/2019, (2019). https://www.raizen.com.br/relatorioanual/1819/pdf/raizen-RA20182019-en.pdf (accessed November 22, 2019).
[83] C.I. Santos, C.C. Silva, S.I. Mussatto, P. Osseweijer, L.A.M. van der Wielen, J.A. Posada, Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment, Renew. Energy. 129 (2018) 733–747. doi:https://doi.org/10.1016/j.renene.2017.05.011.
[84] Y. Yang, B. Hu, 21 - Bio-based chemicals from biorefining: lipid and wax conversion and utilization, in: K.B.T.-A. in B. Waldron (Ed.), Woodhead Publishing, 2014: pp. 693–720. doi:https://doi.org/10.1533/9780857097385.2.693.
[85] D. Humbird, R. Davis, J.D. McMillan, Aeration costs in stirred-tank and bubble column bioreactors, Biochem. Eng. J. 127 (2017) 161–166. doi:https://doi.org/10.1016/j.bej.2017.08.006.
[86] J. Van Brunt, Fermentation Economics, Bio/Technology. 4 (1986) 395–401. doi:10.1038/nbt0586-395.
[87] D. Humbird, R. Davis, J.D. McMillan, Aeration costs in stirred-tank and bubble column bioreactors, Biochem. Eng. J. 127 (2017) 161–166. doi:https://doi.org/10.1016/j.bej.2017.08.006.
[88] Jason Crater; Connor Galleher; Jeff Lievense, Consultancy on Large-Scale Submerged Aerobic Cultivation Process Design – Final Technical Report, 2017.
[89] S.-J. Wang, J.-J. Zhong, Chapter 6 - Bioreactor Engineering, in: S.-T.B.T.-B. for V.-A.P. from R.R. Yang (Ed.), Elsevier, Amsterdam, 2007: pp. 131–161. doi:https://doi.org/10.1016/B978-044452114-9/50007-4.
[90] J. Merchuk, Why use air-lift bioreactors?, Trends Biotechnol. 8 (1990) 66–71. doi:https://doi.org/10.1016/0167-7799(90)90138-N.
[91] 9th Edition Perry’s Chemical Engineers’ Handbook, Perry’s Chemical Engineers’ Handbook, 9th Edition, 9th editio, McGraw-Hill Education, New York, 2019. https://www.accessengineeringlibrary.com/content/book/9780071834087.
[92] Ι. Κούκος, Εισαγωγή στο σχεδιασμό χημικών εργιστασίων, 1st ed., Tziola, 2009.
[93] R.E. west M.S. Peters, K.D. Timmerhaus, Plant design and Economics for Chemical Engineers, 5th ed., McGraw Hill, 2003.
[94] Chemical Engineering Magazine, (2019). https://www.chemengonline.com/pci-home (accessed December 12, 2019).