[2] J. P. Yao, “Microwave photonics,” *Journal of Lightwave Technol. ***27**, (3) 314-335 (2009).

[3] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” *Nature Photonics ***13**, 80-90 (2019).

[4] J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” *IEEE Photonics Journal ***2**, (3) 359-386 (2010).

[5] J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” *Journal of Lightwave Technol. ***24**, (1) 201-229 (2006).

[6] V. R. Supradeepa* et al.*, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” *Nat. Photonics* **6**, 186-194 (2012).

[7] A. Malacarne *et al.*,“Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” *Optics Letters* **37**, (8) 1355-1357 (2012).

[8] V. Torres-Company, and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” *Laser Photonics Rev* **8**, (3) 368-393 (2014).

[9] Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” *Nat Photonics* **1**, 463-467 (2007).

[10] R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” *Optics Express* **21**, (19) 22918-22936 (2013).

[11] J. C. Bancroft, and H. D. Geiger, “Analysis and design of filters for differentiation,” *CREWES Research Report * **9**, 21-13 (1997).

[12] Y. Liu, Y. Yu, S. X. Yuan, X. B. Xu, and X. L. Zhang, “Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity,” *Opt. Lett*. **41**, (21) 5078-5081 (2016).

[13] D. Marpaung, B. Morrison, M. Pagani, R. Pant, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” *Optica* **2**, (2) 76-83 (2015).

[14] A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” *J. Lightwave Technol*. **35**, (4) 846-854 (2017).

[15] X. Xu* et al.*, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” *APL Photonics* **2**, (9) 096104 (2017).

[16] X. Q. Zhu, F. Y. Chen, H. F. Peng, and Z. Y. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” *Opt. Express* **25**, (8) 9232-9243 (2017).

[17] F. Jiang, Y. Yu, H. T. Tang, L. Xu, and X. L. Zhang, “Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity,” *Opt. Express* **24**, (16) 18655-18663 (2016).

[18] J. Wu* et al.*, “RF photonics: An optical microcombs' perspective,” *IEEE J. Sel. Top. Quantum Electron.* **24**, (4) 6101020 (2018).

[19] E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” *IEEE Journal of Microwave Theory* **58**, (11) 3269-3278 (2010).

[20] Z. J. Zhu, H. Chi, T. Jin, S. L. Zheng, X. F. Jin, and X. M. Zhang, “All-positive-coefficient microwave photonic filter with rectangular response,” *Opt. Lett.* **42**, (15) 3012-3015 (2017).

[21] S. Mansoori, and A. Mitchell, “RF transversal filter using an AOTF,” *IEEE Photonic Tech L* **16**, (3) 879-881 (2004).

[22] J. S. Leng, W. Zhang, and J. A. R. Williams, “Optimization of superstructured fiber Bragg gratings for microwave photonic filters response,” *IEEE Photonic Tech L* **16**, (7) 1736-1738 (2004).

[23] M. Delgado-Pinar, J. Mora, A. Diez, M. V. Andres, B. Ortega, and J. Capmany, “Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator,” *Opt. Lett*. **30**, (1) 8-10 (2005).

[24] G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” *IEEE Photonic Tech L* **12**, (9) 1183-1185 (2000).

[25] D. B. Hunter, R. A. Minasian, and P. A. Krug, “Tunable optical transversal filter based on chirped gratings,” *Electron. Lett*. **31**, (25) 2205-2207 (1995).

[26] X. Xu, M. Tan, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic RF phase-encoded signal generation with a microcomb source,” *Journal of Lightwave Technology* **38**, (7) 1722-727 (2020). DOI:10.1109/JLT.2019.2958564.

[27] M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave and RF photonic fractional Hilbert transformer based on a 50GHz Kerr micro-comb”, *Journal of Lightwave Technology* **37**, (24) 6097-6104 (2019).

[28] X. Xu, J. Wu, M. Tan, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Broadband microwave frequency conversion based on an integrated optical micro-comb source”, *Journal of Lightwave Technology* **38,** (2) 332-338 (2020).

[29] X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic RF signal processing”, *IEEE Photonics Technology Letters* **31**, (23) 1854-1857 (2019).

[30] X. Xu* et al.*, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” *Photonics Res.* **6**, (5) B30-B36 (2018).

[31] X. Xue *et al.*, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” *Journal of Lightwave Technology* **36**, (12) 2312-2321 (2018).

[32] X. Xu* et al.*, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” *Opt. Express* **26**, (3) 2569-2583 (2018).

[33] M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic RF and microwave filters based on 49GHz and 200GHz Kerr microcombs”, *Optics Communications* **465**, Article: 125563, Feb. 22 (2020). doi:10.1016/j.optcom.2020.125563.

[34] X. Xue, *et al.*, “Programmable single-bandpass photonic RF filter based on a Kerr comb from a microring,” *Journal of Lightwave Technol.* **32**, (20) 3557-3565 (2014).

[35] X. Xu* et al.*, “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” *Journal of Lightwave Technology* **37**, (4) 1288-1295 (2019).

[36] T. G. Nguyen* et al.*, “Integrated frequency comb source-based Hilbert transformer for wideband microwave photonic phase analysis,” *Opt. Express* **23**, (17) 22087-22097 (2015).

[37] X. Xu* et al.*, “Broadband RF channelizer based on an integrated optical frequency Kerr comb source,” *Journal of Lightwave Technology* **36**, (19) 4519-4526 (2018).

[38] X. Xu* et al.*, “High performance RF filters via bandwidth scaling with Kerr micro-combs,” *APL Photonics* **4**, 026102 (2019).

[39] X. Xu* et al.*, “Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators,” *Journal of Optics* **20**, (11) 115701 (2018).

[40] X. Xu* et al.*, “Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator,” *Journal of Lightwave Technology* **36**, (20) 4808-4818 (2018).

[41] M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave fractional differentiator based on photonics”, *IEEE Transactions on Circuits and Systems II: Express Briefs*, **37** (11) pp. 2767-2771 (2020).

DOI: 10.1109/TCSII.2020.2965158.

[42] X. Xu, M. Tan, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic RF and microwave integrator with soliton crystal microcombs”, *IEEE Transactions on Circuits and Systems: Express Briefs*, **67** (12) pp. 3582-3586 May 19 (2020).

DOI:10.1109/TCSII.2020.2995682.

[43] M. Tan, X. Xu, A. Boes, B. Corcoran, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss, “Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source”, *Journal of Lightwave Technology*, **38** (22) pp.6221-6226, Oct 22 (2020).

DOI: 10.1109/JLT.2020.3009655.

[44] X. Xu, M. Tan, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Broadband photonic radio frequency channelizer with 90 channels based on a soliton crystal microcomb”, *Journal of Lightwave Technology*, **38, **(18) pp. 5116 - 5121, Sept. 15 (2020). doi: 10.1109/JLT.2020.2997699.

[45] A. J. Metcalf *et al.*, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering,” *Optics Express* **24**, (21) 23925-23940 (2016).

[46] J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” *Transactions on Audio and Electroacoustics* **21**, (6) 506-526 (1973).

[47] R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” *Opt. Lett*. **35**, (19) 3234-3236 (2010).

[48] W. Z. Li, and J. P. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” *Opt. Express* **17**, (26) 23712-23718 (2009).

[49] C. H. Chen, C. He, D. Zhu, R. H. Guo, F. Z. Zhang, and S. L. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” *Opt. Lett*. **38**, (16) 3137-3139 (2013).

[50] T. Saitoh, M. Kourogi, and M. Ohtsu, “An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-mu m wavelength,” *IEEE Photonic Tech L* **8**, (11) 1543-1545 (1996).

[51] P. del’Haye *et al.*, “Optical frequency comb generation from a monolithic Micro-resonator,” *Nature* **450**, 1214–1217 (2007).

[52] W. Liang* et al.*, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” *Nature communications* **6**, 7957 (2015).

[53] J. S. Levy *et al.*, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” *Nat. Photonics* **4**, 37-40 (2010).

[54] L. Razzari *et al.*, “CMOS-compatible integrated optical hyper-parametric oscillator,” *Nat. Photonics* **4**, 41-45 (2010).

[55] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” *Nat. Photonics* **7**, 597-607 (2013).

[56] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical micro-resonators,” *Science* **361**, eaan8083 (2018).

[57] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” *Nature Photonics* **13**, 158-169 (2019).

[58] A. Pasquazi* et al.*, “Micro-combs: A novel generation of optical sources,” *Physics Reports-Review Section of Physics Letters* **729**, 1-81 (2018).

[59] D. C. Cole, E. S. Lamb, P. Del'Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” *Nat. Photonics* **11**, 671-676 (2017).

[60] X. Xue* et al.*, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” *Nature Photonics* **9**, 594 (2015).

[61] H. Bao *et al.*, “Laser cavity-soliton microcombs,” *Nature Photonics* **13**, 384-389 (2019).

[62] X. Xue, X. Zheng, and B. Zhou, “Super-efficient temporal solitons in mutually coupled optical cavities,” *Nature Photonics* **13**, 616-622 (2019).

[63] H. Zhou* et al.*, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” *Light: Science & Applications* **8**, 50 (2019).

[64] B. Stern, X Ji, Y. Okawachi, A.L. Gaeta, M. Lipson, “Battery-operated integrated frequency comb generator,” *Nature* **562**, 401-405 (2018).

[65] M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” *Nature Photonics* **2**, 737-740 (2008).

[66] Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” *Nat. Commun*. **3**, 1-6 (2012).

[67] A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” *Opt. Exp*. **20**, (24) 27355-27362 (2012).

[68] A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” *Opt. Exp*. **21**, (11) 13333-13341 (2013).

[69] A. Pasquzai, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via Four wave Mixing in a high index doped silica waveguide,” *Opt. Exp*. **18**, (8) 7634-7641 (2010).

[70] M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” *Opt. Exp*. **18**, (8) 7625-7633 (2010).

[71] D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Legare, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” *Opt. Exp*. **18**, (2) 923-930 (2010).

[72] H. Bao, L. Olivieri, M. Rowley, S. T. Chu, B. E. Little, R. Morandotti, D. J. Moss, J. S. T. Gongora, M. Peccianti and A. Pasquazi, “Turing patterns in a fibre laser with a nested micro-resonator: robust and controllable micro-comb generation”, *Physical Review Research* **2**, 023395 (2020).

[73] L. D. Lauro, J. Li, D. J. Moss, R. Morandotti, S. T. Chu, M. Peccianti, and A. Pasquazi, “Parametric control of thermal self-pulsation in micro-cavities,” *Opt. Lett*. **42**, (17) 3407-3410 (2017).

[74] H. Bao, A. Cooper, S. T. Chu, D. J. Moss, R. Morandotti, B. E. Little, M. Peccianti, and A. Pasquazi, “Type-II micro-comb generation in a filter-driven four wave mixing laser,” *Photonics Research* **6**, (5) B67-B73 (2018).

[75] M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-Chip ultra-fast 1st and 2nd order CMOS compatible all-optical integration”, *Optics Express* **19**, (23) 23153-23161 (2011).

[76] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang and L. Wang, “Robust soliton crystals in a thermally controlled microresonator,” *Optics Letters* **43**, (9) 2002-2005 (2018).

[77] B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss, “Ultra-dense optical data transmission over standard fibre with a signal chip source,” *Nature Communications* **11**, 1-7, Article 2568 (2020).

[78] P. Marin-Palomo, *el al*., “Microresonator-based solitons for massively parallel coherent optical communication”, *Nature* **546** (7657), 274 (2017).

[79] J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, *et al*., “Coherent terabit communications with microresonator Kerr frequency combs”, *Nature Photonics* **8** (5), 375-380 (2014).

[80] X. Xu, *et al*., “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, *Laser and Photonics Reviews* **14** (10), 2000070 (2020).

[81] X. Xu, *et al*., “11 TOPS photonic convolutional accelerator for optical neural networks,” *Nature* **589** (7840), 44-51 (2021).

[82] J. Feldmann, *et al*., “Parallel convolutional processing using an integrated photonic tensor core,” *Nature* **589** (7840), 52-58 (2021).

[83] Kues, M.et al. Quantum optical microcombs. Nature Photonics **13**, (3) 170-179 (2019). doi:10.1038/s41566-019-0363-0

[84] C. Reimer et al., “Integrated frequency comb source of heralded single photons,” Optics Express, vol. 22, no. 6, pp. 6535-6546, 2014.

[85] C. Reimer, et al., “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip”, Nature Communications, vol. 6, Article 8236, 2015. DOI: 10.1038/ncomms9236.

[86] L. Caspani, C. Reimer, M. Kues, et al., “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs,” Nanophotonics, vol. 5, no. 2, pp. 351-362, 2016.

[87] C. Reimer et al., “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, vol. 351, no. 6278, pp. 1176-1180, 2016.

[88] M. Kues, et al., “On-chip generation of high-dimensional entangled quantum states and their coherent control”, Nature, vol. 546, no. 7660, pp. 622-626, 2017.

[89] P. Roztocki et al., “Practical system for the generation of pulsed quantum frequency combs,” Optics Express, vol. 25, no.16, 18940-18949, 2017.

[90] Y. Zhang, et al., “Induced photon correlations through superposition of two four-wave mixing processes in integrated cavities”, Laser and Photonics Reviews, vol. 14, no. 7, pp. 2000128, 2020. DOI: 10.1002/lpor.202000128

[91] C. Reimer, et al.,“High-dimensional one-way quantum processing implemented on d-level cluster states”, Nature Physics, vol. 15 (2) 148 (2019).

[92] P. Roztocki et al., “Arbitrary phase access for stable fiber interferometers”, Laser and Photonics Reviews, vol.15 (4) 2000524 (2021). DOI: 10.1002/lpor.202000524.

[93] S. Sciara et al., “Generation and Processing of Complex Photon States With Quantum Frequency Combs”, IEEE Photonics Technology Letters, vol. 31 (23), 1862-1865 (2019).

[94] P. Roztocki et al., “Complex quantum state generation and coherent control based on integrated frequency combs”, Journal of Lightwave Technology, vol. 37 (2), 338-344 (2019).

[95] S Sciara et al., “Universal N-Partite d-Level Pure-State Entanglement Witness Based on Realistic Measurement Settings”, Physical Review Letters, Vol. 122 (12), 120501 (2019).

[96] L.Jin, L. Di Lauro, A.Pasquazi, M. Peccianti, David J. Moss, R.Morandotti, B.E. Little, S.T.Chu, “Optical multi-stability in a nonlinear high-order microring resonator filter”, Editors Pick, Applied Physics Letters (APL) Photonics, vol. **5** Article 056106, May 22 (2020). https://doi.org/10.1063/5.0002941

[97] A. Aadhi, Anton V. Kovalev, Michael Kues, Piotr Roztocki, Christian Reimer, Young Zhang, Tao Wang, Brent E. Little, Sai T. Chu, Zhiming Wang, David J. Moss, Evgeny A. Viktorov, and Roberto Morandotti, “Highly reconfigurable hybrid laser based on an integrated nonlinear waveguide”, Optics Express, vol. 27 (18) 25252 (2019). DOI: 10.1364/OE.27.025251.

[98] M. Karpov, M. H. P. Pfeiffer, H Guo, W. Weng, J. Liu, T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators”, *Nature Physics* **15** (10), 1071-1077 (2019).

[99] M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave high bandwidth signal processing based on Kerr Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2020). DOI:10.1080/23746149.2020.1838946.

[100] Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Micro-combs and Integrated Micro-ring Resonators”, JOSarXiv.202010.0002.

[101] Mengxi Tan, Xingyuan Xu, David Moss “Tunable Broadband RF Photonic Fractional Hilbert Transformer Based on a Soliton Crystal Microcomb”, Preprints, DOI: 10.20944/preprints202104.0162.v1

[102] Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Orthogonally polarized Photonic Radio Frequency single sideband generation with integrated micro-ring resonators”, *Journal of Semiconductors* **42 **(4), 041305 (2021). DOI: 10.1088/1674-4926/42/4/041305.

[103] Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Optical Micro-combs”, *Journal of Semiconductors* **42** (4), 041302 (2021). DOI:10.1088/1674-4926/42/4/041302.

[104] H.Bao, L.Olivieri, M.Rowley, S.T. Chu, B.E. Little, R.Morandotti, D.J. Moss, J.S.T. Gongora, M.Peccianti and A.Pasquazi, “Laser Cavity Solitons and Turing Patterns in Microresonator Filtered Lasers: properties and perspectives”, Paper No. LA203-5, Paper No. 11672-5, SPIE LASE, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2576645

[105] Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Advanced microwave signal generation and processing with soliton crystal microcombs”, or “Photonic convolutional accelerator and neural network in the Tera-OPs regime based on Kerr microcombs”, Paper No. **11689-38, **PW21O-OE201-67, Integrated Optics: Devices, Materials, and Technologies XXV, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI: 10.1117/12.2584017

[106] Mengxi Tan, Bill Corcoran, Xingyuan Xu, Andrew Boes, Jiayang Wu, Thach Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Optical data transmission at 40 Terabits/s with a Kerr soliton crystal microcomb”, Paper No.11713-8, PW21O-OE803-23, Next-Generation Optical Communication: Components, Sub-Systems, and Systems X, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584014

[107] Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “RF and microwave photonic, fractional differentiation, integration, and Hilbert transforms based on Kerr micro-combs”, Paper No. 11713-16, PW21O-OE803-24, Next-Generation Optical Communication: Components, Sub-Systems, and Systems X, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584018

[108] Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb”, or “Photonic microwave and RF channelizers based on Kerr micro-combs”, Paper No. 11685-22, PW21O-OE106-49, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIV, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584015

[109] X. Xu, M. Tan, J. Wu, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, B. Corcoran, D. Hicks, and D. J. Moss, “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, IEEE Topical Meeting on Microwave Photonics (MPW), pp. 220-224,.Matsue, Japan, November 24-26, 2020. Electronic ISBN:978-4-88552-331-1.

[110] Mengxi Tan, Bill Corcoran, Xingyuan Xu, Andrew Boes, Jiayang Wu, Thach Nguyen, S.T. Chu, B. E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Ultra-high bandwidth optical data transmission with a microcomb”, IEEE Topical Meeting on Microwave Photonics (MPW), pp. 78-82.Virtual Conf., Matsue, Japan, November 24-26, 2020. Electronic ISBN:978-4-88552-331-1.