In Near Memory Processing (NMP), processing elements(PEs) are placed near the 3D memory, reducing unnecessary data transfers between the CPU and the memory. However, as the CPUs and the PEs of the NMP use a shared memory space, maintaining coherency between them is a challenge. Most current literature relies on maintaining coherence for fine-grained or coarse-grained instruction granularities for the offloaded code blocks. We understand that for most NMP-offloaded instructions, the coherence conflict is low, and waiting for the coherence transaction hinders the performance. We construct an analytical model for an existing coherence strategy called CONDA, which is within 4% accuracy. This model indicates the key parameters responsible - the granularity of offloaded code, probability of conflicts, transaction times, and commit time. This paper identifies the prospective optimizations using the analytical model for CONDA. It proposes a new coherence scheme called MRCN: Monitored Rollback Coherence for NMP. MRCN addresses the coherence issue while eliminating unnecessary re-executions with limited hardware overhead. The MRCN is evaluated on synthetic as well as Rodinia benchmarks. The analytical results are within 4% accuracy of the simulation results. The MRCN shows improvement of up to 25% over CONDA strategy for the same benchmark under different execution conditions.