Barredo, E., and DeGennaro, M. (2020). Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol 36, 473–484. doi:10.1016/j.pt.2020.02.003.
Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., et al. (2000). New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97, 9329–9334. doi:10.1073/pnas.160241697.
Bruce, T. J. A., Matthes, M. C., Chamberlain, K., Woodcock, C. M., Mohib, A., Webster, B., et al. (2008). cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105, 4553–4558. doi:10.1073/pnas.0710305105.
Carvell, G. E., Jackson, R. R., and Cross, F. R. (2017). Ontogenetic shift in plant-related cognitive specialization by a mosquito-eating predator. Behav Processes 138, 105–122. doi:10.1016/j.beproc.2017.02.022.
Chellappandian, M., Vasantha-Srinivasan, P., Senthil-Nathan, S., Karthi, S., Thanigaivel, A., Ponsankar, A., et al. (2018). Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ Int 113, 214–230. doi:10.1016/j.envint.2017.12.038.
Dormont, L., Mulatier, M., Carrasco, D., and Cohuet, A. (2021). Mosquito attractants. J Chem Ecol. doi:10.1007/s10886-021-01261-2.
Egger, B., Spangl, B., and Koschier, E. H. (2016). Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis. Entomol Exp Appl 158, 78–86. doi:10.1111/eea.12381.
Foster, W. A. (1995). Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40, 443–474.
Foster, W. A. (2008). Phytochemicals as population sampling lures. J Am Mosq Control Assoc 24, 138–146. doi:10.2987/8756-971x(2008)24[138:papsl]2.0.co;2.
Foster, W. A., and Takken, W. (2004). Nectar-related versus human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull. Entomol. Res. 94, 145–157.
Garboui, S. S., Jaenson, T. G. T., Borg-Karlson, A. K., and Palsson, K. (2007). Repellency of methyl jasmonate to Ixodes ricinus nymphs (Acari : Ixodidae). Exp Appl Acarol 42, 209–215. doi:10.1007/s10493-007-9066-1.
Geier, M., and Boeckh, J. (1999). A new Y‐tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Appl 92, 9–19.
Gfeller, A., Dubugnon, L., Liechti, R., and Farmer, E. E. (2010). Jasmonate biochemical pathway. Sci Signalling 3, cm3. doi:10.1126/scisignal.3109cm3.
Grison, C., Carrasco, D., Pelissier, F., and Moderc, A. (2020). Reflexion on bio-sourced mosquito repellents: Nature, activity, and preparation. Front Ecol Evol 8, 8. doi:10.3389/fevo.2020.00008.
Ibrahim, M. A., Nissinen, A., and Holopainen, J. K. (2005). Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J Chem Ecol 31, 1969–1984. doi:10.1007/s10886-005-6071-x.
Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W. (1999). Differential induction of plant volatile biosynthesis in the Lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol 121, 153–162. doi:10.1104/pp.121.1.153.
Kost, C., and Heil, M. (2006). Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J. Ecol. 94, 619–628. doi:10.1111/j.1365-2745.2006.01120.x.
Lahondère, C., Vinauger, C., Okubo, R. P., Wolff, G. H., Chan, J. K., Akbari, O. S., et al. (2020). The olfactory basis of orchid pollination by mosquitoes. Proc Natl Acad Sci USA 117, 708–716. doi:10.1073/pnas.1910589117.
Lehane, M. J. (2005). The biology of blood-sucking in insects. 2nd. Cambridge, U.K.: Cambridge University Press.
Manda, H., Gouagna, L. C., Foster, W. A., Jackson, R. R., Beier, J. C., Githure, J. I., et al. (2007a). Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar J 6. doi:10.1186/1475-2875-6-113.
Manda, H., Gouagna, L. C., Nyandat, E., Kabir, E. W., Jackson, R. R., Foster, W. A., et al. (2007b). Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med Vet Entomol 21, 103–111. doi:10.1111/j.1365-2915.2007.00672.x.
Menger, D. J., Van Loon, J. J. A., and Takken, W. (2014). Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol 28, 407–413. doi:10.1111/mve.12061.
Mulatier, M., Porciani, A., Nadalin, L., Alou, L. P. A., Chandre, F., Pennetier, C., et al. (2018). DEET efficacy increases with age in the vector mosquitoes Anopheles gambiae s.s. and Aedes albopictus (Diptera: Culicidae). J Med Entomol 55, 1542–1548. doi:10.1093/jme/tjy134.
Nikbakhtzadeh, M. R., Terbot, J. W., Otienoburu, P. E., and Foster, W. A. (2014). Olfactory basis of floral preference of the malaria vector Anopheles gambiae (Diptera: Culicidae) among common African plants. J Vector Ecol 39, 372–383. doi:10.1111/jvec.12113.
Nyasembe, V. O., Tchouassi, D. P., Pirk, C. W. W., Sole, C. L., and Torto, B. (2018). Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl Trop Dis 12, e0006185. doi:10.1371/journal.pntd.0006185.
Nyasembe, V. O., and Torto, B. (2014). Volatile phytochemicals as mosquito semiochemicals. Phytochem Lett 8, 196–201. doi:10.1016/j.phytol.2013.10.003.
Olson, M. F., Garcia-Luna, S., Juarez, J. G., Martin, E., Harrington, L. C., Eubanks, M. D., et al. (2020). Sugar feeding patterns for Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) mosquitoes in South Texas. J Med Ent 57, 1111–1119. doi:10.1093/jme/tjaa005.
Peach, D. A. H., and Gries, G. (2016). Nectar thieves or invited pollinators? A case study of tansy flowers and common house mosquitoes. Arthropod-Plant Interact 10, 497–506. doi:10.1007/s11829-016-9445-9.
Peach, D. A. H., and Gries, G. (2020). Mosquito phytophagy - sources exploited, ecological function, and evolutionary transition to haematophagy. Entomol Exp Appl. doi:10.1111/eea.12852.
Pickett, J. A., Birkett, M. A., Bruce, T. J. A., Chamberlain, K., Gordon-Weeks, R., Matthes, M. C., et al. (2007). Developments in aspects of ecological phytochemistry: The role of cis-jasmone in inducible defence systems in plants. Phytochemistry 68, 2937–2945. doi:10.1016/j.phytochem.2007.09.025.
R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Sissoko, F., Junnila, A., Traore, M. M., Traore, S. F., Doumbia, S., Dembele, S. M., et al. (2019). Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PLoS ONE 14, e0214170. doi:10.1371/journal.pone.0214170.
Sobhy, I. S., Caulfield, J. C., Pickett, J. A., and Birkett, M. A. (2020). Sensing the danger signals: cis-Jasmone reduces aphid performance on potato and modulates the magnitude of released volatiles. Front Ecol Evol 7, 499. doi:10.3389/fevo.2019.00499.
Sun, Y.-L., Dong, J.-F., Huang, L.-Q., and Wang, C.-Z. (2020). The cotton bollworm endoparasitoid Campoletis chlorideae is attracted by cis-jasmone or cis-3-hexenyl acetate but not by their mixtures. Arthropod-Plant Interact 14, 169–179. doi:10.1007/s11829-019-09738-4.
Tallon, A. K., Hill, S. R., and Ignell, R. (2019). Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci Rep 9. doi:10.1038/s41598-018-36550-6.
Turlings, T. C. J., and Erb, M. (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63, 433–452. doi:10.1146/annurev-ento-020117-043507.
von Oppen, S., Masuh, H., Licastro, S., Zerba, E., and Gonzalez-Audino, P. (2015). A floral-derived attractant for Aedes aegypti mosquitoes. Entomol Exp Appl 155, 184–192. doi:10.1111/eea.12297.
Vrzal, E. M., Allan, S. A., and Hahn, D. A. (2010). Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J Insect Physiol 56, 1659–1664. doi:10.1016/j.jinsphys.2010.06.011.
Wasternack, C. (2015). How jasmonates earned their laurels: Past and present. J Plant Growth Regul 34, 761–794. doi:10.1007/s00344-015-9526-5.
Xu, P., Choo, Y.-M., De La Rosa, A., and Leal, W. S. (2014). Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA 111, 16592–16597. doi:10.1073/pnas.1417244111.
Zeng, F. F., Xu, P. X., Tan, K. M., Zarbin, P. H. G., and Leal, W. S. (2018). Methyl dihydrojasmonate and lilial are the constituents with an “off-label” insect repellence in perfumes. PLoS ONE 13. doi:10.1371/journal.pone.0199386.