1. Bassi D, Monet Rene. Botany and Taxonomy. In: Layne DR, Bassi D, editors. The Peach: Botany, Production and Use. London, UK.: CABI; 2008. pp. 1-36.
2. Abdelghafar A, Burrell R, Reighard G, Gasic K. Antioxidant capacity and bioactive compounds accumulation in peach breeding germplasm. J Am Pom Soc. 2018;72: 40-69.
3. Cantin CM, Moreno MA, Gogorcena Y. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem. 2009;57: 4586-4592. doi: 10.1021/jf900385a.
4. FAOSTAT. Crops Data. 2019. Available: http://www.fao.org/faostat/en/#data/QC.
5. Byrne DH. Trends in stone fruit cultivar development. HortTech. 2005;15: 494-500.
6. Lalancette N, McFarland K. Phytotoxicity of copper-based bactericides to peach and nectarine. Plant Dis. 2007;91: 1122-1130. doi: 10.1094/PDIS-91-9-1122.
7. Stefani E. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J Plant Pathol. 2010;92: S99-S103.
8. Amiri A, Brannen PM, Schnabel G. Reduced sensitivity in Monilinia fructicola field isolates from South Carolina and Georgia to respiration inhibitor fungicides. Plant Dis. 2010;94: 737-743. doi: 10.1094/PDIS-94-6-0737.
9. Lamichhane J. Xanthomonas arboricola diseases of stone fruit, almond and walnut trees: progress toward understanding and management. Plant Dis. 2014;98: 1600-1610.
10. Ritchie DF. Bacterial spot. In: Ogawa JM, Zehr EI, Bird GW, Ritchie DF, Uriu K, Uyemoto JK, editors. Compendium of Stone Fruit Diseases. American Phytopathological Society, St. Paul, MN; 1995. pp. 50-52.
11. Werner D, Ritchie DF, Cain DW, Zehr EI. Susceptibility of peaches and nectarines, plant introductions, and other Prunus species to bacterial spot. HortSci. 1986;21: 127-130.
12. Okie WR. Handbook of peach and nectarine varieties: performance in the southeastern United States and index of names. District of Columbia: U.S. Dept. of Agriculture, Agricultural Research Service; National Technical Information Service, distributor; 1998.
13. Okie WR, Bacon T, Bassi D. Fresh market cultivar development. In: Layne DR, Bassi D, editors. The Peach: Botany, Production and Uses. London, UK: CABI International; 2008. pp. 139-174.
14. Sherman WB, Lyrene PM. Bacterial leaf spot susceptibility in low chill peaches. Fruit Var J. 1981;35: 74-77.
15. Yang N, Reighard G, Ritchie D, Okie W, Gasic K. Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genetics & Genomes. 2012: 1-14. doi: 10.1007/s11295-012-0580-x.
16. Vanderzande S, Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, Bink, Marco C. A. M, et al. High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PloS one. 2019;14: e0210928. doi: 10.1371/journal.pone.0210928.
17. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, et al. Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE. 2012;7: e35668.
18. Gasic K, Reighard G, Okie W, Clark J, Gradziel T, Byrne D, et al. Bacterial spot resistance in peach: Functional allele distribution in breeding germplasm. Acta Hortic. 2015;1084: 69-74. doi: 10.17660/ActaHortic.2015.1084.7.
19. Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, et al. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. Hort Res. 2020;7: 177. doi: 10.1038/s41438-020-00398-7.
20. Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, et al. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Hort Res. 2019;6: 58. doi: 10.1038/s41438-019-0140-8.
21. Jung S, Lee T, Cheng C, Buble K, Zheng P, Yu J, et al. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. NAR. 2018: 1-9. doi: 10.1093/nar/gky1000.
22. Peace CP. DNA-informed breeding of rosaceous crops: promises, progress and prospects. Hort Res. 2017;4: 17006. doi: 10.1038/hortres.2017.6.
23. He C, Holme J, Anthony J. SNP genotyping: the KASP assay. Methods Mol Biol. 2014;1145: 75-86. doi: 10.1007/978-1-4939-0446-4_7.
24. Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed. 2014;33: 1-14. doi: 10.1007/s11032-013-9917-x.
25. Patterson EL, Fleming MB, Kessler KC, Nissen SJ, Gaines TA. A KASP genotyping method to identify Northern Watermilfoil, Eurasian Watermilfoil, and their interspecific hybrids. Front Plant Sci. 2017;8. doi: 10.3389/fpls.2017.00752.
26. Noh Y, Lee S, Whitaker VM, Cearley KR, Cha J. A high-throughput marker-assisted selection system combining rapid DNA extraction high-resolution melting and simple sequence repeat analysis: Strawberry as a model for fruit crops. Journal of Berry Research. 2017;7: 23-31. doi: 10.3233/JBR-160145.
27. Edge-Garza DA, Rowland TV, Jr., Haendiges S, Peace C. A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling. Mol Breed. 2014;34: 2225-2228. doi: 10.1007/s11032-014-0160-x.
28. Peace CP, Luby J, Weg vd, W.E, Bink, M. C. A. M, Iezzoni AF. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genetics & Genomes. 2014;10: 1679-1694. doi: 10.1007/s11295-014-0788-z.
29. Layne DR, Bassi D. The peach: botany, production and uses. Wallingford, UK; Cambridge, MA: Cabi; 2008.
30. Gasic K, Da Silva Linge C, Bianco L, Troggio M, Rossini L, Bassi D, et al. Development and evaluation of a 9K SNP addition to the peach IPSC 9K SNP array v1. HortSci. 2019;54: S188.
31. Preece JE, Aradhya M. The Prunus collection at the National Clonal Germplasm repository in davis, California. Acta Hortic. 2013;985: 47-54.
32. Iezzoni A, Peace C, Main D, Bassil N, Coe M, Finn C, et al. RosBREED2: progress and future plans to enable DNA-informed breeding in the Rosaceae. Acta Hortic. 2017: 115-118. doi: 10.17660/ActaHortic.2017.1172.20.