1 Olusanya, B. O., Davis, A. C. & Hoffman, H. J. Hearing loss: rising prevalence and impact. Bull World Health Organ 97, 646-646A, doi:10.2471/BLT.19.224683 (2019).
2 Cunningham, L. L. & Tucci, D. L. Hearing Loss in Adults. N Engl J Med 377, 2465-2473, doi:10.1056/NEJMra1616601 (2017).
3 Korver, A. M. et al. Congenital hearing loss. Nat Rev Dis Primers 3, 16094, doi:10.1038/nrdp.2016.94 (2017).
4 Bogo, R. et al. Prevalence, Incidence Proportion, and Heritability for Tinnitus: A Longitudinal Twin Study. Ear Hear 38, 292-300, doi:10.1097/AUD.0000000000000397 (2017).
5 Duan, H. et al. Heritability of Age-Related Hearing Loss in Middle-Aged and Elderly Chinese: A Population-Based Twin Study. Ear Hear 40, 253-259, doi:10.1097/AUD.0000000000000610 (2019).
6 Wells, H. R. R. et al. GWAS Identifies 44 Independent Associated Genomic Loci for Self-Reported Adult Hearing Difficulty in UK Biobank. Am J Hum Genet 105, 788-802, doi:10.1016/j.ajhg.2019.09.008 (2019).
7 Vuckovic, D. et al. Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss. Hum Mol Genet 24, 5655-5664, doi:10.1093/hmg/ddv279 (2015).
8 Niu, Y. et al. Genome-wide association study identifies 7q11.22 and 7q36.3 associated with noise-induced hearing loss among Chinese population. J Cell Mol Med 25, 411-420, doi:10.1111/jcmm.16094 (2021).
9 Hoffmann, T. J. et al. A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. PLoS Genet 12, e1006371, doi:10.1371/journal.pgen.1006371 (2016).
10 Girotto, G. et al. Hearing function and thresholds: a genome-wide association study in European isolated populations identifies new loci and pathways. J Med Genet 48, 369-374, doi:10.1136/jmg.2010.088310 (2011).
11 Nagtegaal, A. P. et al. Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. Sci Rep 9, 15192, doi:10.1038/s41598-019-51630-x (2019).
12 Van Laer, L. et al. A genome-wide association study for age-related hearing impairment in the Saami. Eur J Hum Genet 18, 685-693, doi:10.1038/ejhg.2009.234 (2010).
13 Fransen, E. et al. Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur J Hum Genet 23, 110-115, doi:10.1038/ejhg.2014.56 (2015).
14 Wheeler, H. E. et al. Variants in WFS1 and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated Ototoxicity. Clin Cancer Res 23, 3325-3333, doi:10.1158/1078-0432.CCR-16-2809 (2017).
15 Ali Mosrati, M. et al. Genome-wide analysis reveals a novel autosomal-recessive hearing loss locus DFNB80 on chromosome 2p16.1-p21. J Hum Genet 58, 98-101, doi:10.1038/jhg.2012.141 (2013).
16 Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet 20, 467-484, doi:10.1038/s41576-019-0127-1 (2019).
17 Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48, 245-252, doi:10.1038/ng.3506 (2016).
18 Hammerschlag, A. R. et al. Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies. Biol Psychiatry 88, 470-479, doi:10.1016/j.biopsych.2020.05.002 (2020).
19 Theriault, S. et al. A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nat Commun 9, 988, doi:10.1038/s41467-018-03260-6 (2018).
20 Liao, C. et al. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat Commun 10, 4450, doi:10.1038/s41467-019-12450-9 (2019).
21 Niu, Y. et al. Genome-wide association study identifies 7q11.22 and 7q36.3 associated with noise-induced hearing loss among Chinese population. J Cell Mol Med, doi:10.1111/jcmm.16094 (2020).
22 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128, doi:10.1186/1471-2105-14-128 (2013).
23 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90-97, doi:10.1093/nar/gkw377 (2016).
24 Baker, K. & Beales, P. L. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet 151C, 281-295, doi:10.1002/ajmg.c.30231 (2009).
25 Sai, N. et al. Involvement of Cholesterol Metabolic Pathways in Recovery from Noise-Induced Hearing Loss. Neural Plast 2020, 6235948, doi:10.1155/2020/6235948 (2020).
26 Taylor, K. C. & Sanders, C. R. Regulation of KCNQ/Kv7 family voltage-gated K(+) channels by lipids. Biochim Biophys Acta Biomembr 1859, 586-597, doi:10.1016/j.bbamem.2016.10.023 (2017).
27 Kim, H. J. et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res 21, 944-956, doi:10.1038/cr.2011.27 (2011).
28 Fettiplace, R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 7, 1197-1227, doi:10.1002/cphy.c160049 (2017).
29 Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51, 1339-1348, doi:10.1038/s41588-019-0481-0 (2019).
30 Sindura, K. P. & Banerjee, M. An Immunological Perspective to Non-syndromic Sensorineural Hearing Loss. Front Immunol 10, 2848, doi:10.3389/fimmu.2019.02848 (2019).
31 Baradaranfar, M. et al. The Role of Immunological Factors on Sudden Sensoryneural Hearing Loss. Iran J Otorhinolaryngol 30, 219-223 (2018).
32 Blazer, D. G. & Tucci, D. L. Hearing loss and psychiatric disorders: a review. Psychol Med 49, 891-897, doi:10.1017/S0033291718003409 (2019).
33 Blazer, D. G. Hearing Loss: The Silent Risk for Psychiatric Disorders in Late Life. Psychiatr Clin North Am 41, 19-27, doi:10.1016/j.psc.2017.10.002 (2018).
34 Aladag, I., Eyibilen, A., Guven, M., Atis, O. & Erkorkmaz, U. Role of oxidative stress in hearing impairment in patients with type two diabetes mellitus. J Laryngol Otol 123, 957-963, doi:10.1017/S0022215109004502 (2009).
35 Curhan, S. G., Eavey, R., Wang, M., Stampfer, M. J. & Curhan, G. C. Body mass index, waist circumference, physical activity, and risk of hearing loss in women. Am J Med 126, 1142 e1141-1148, doi:10.1016/j.amjmed.2013.04.026 (2013).
36 Cruickshanks, K. J. et al. Smoking, central adiposity, and poor glycemic control increase risk of hearing impairment. J Am Geriatr Soc 63, 918-924, doi:10.1111/jgs.13401 (2015).
37 Kancherla, V., Van Naarden Braun, K. & Yeargin-Allsopp, M. Childhood vision impairment, hearing loss and co-occurring autism spectrum disorder. Disabil Health J 6, 333-342, doi:10.1016/j.dhjo.2013.05.003 (2013).
38 Cox, L., Vanderwall, D. K., Parkinson, K. C., Sweat, A. & Isom, S. C. Expression profiles of select genes in cumulus-oocyte complexes from young and aged mares. Reprod Fertil Dev 27, 914-924, doi:10.1071/RD14446 (2015).
39 Cheng, Y. C. et al. Genome-wide association analysis of ischemic stroke in young adults. G3 (Bethesda) 1, 505-514, doi:10.1534/g3.111.001164 (2011).
40 Abumansour, I. S. et al. ARL6IP6, a susceptibility locus for ischemic stroke, is mutated in a patient with syndromic Cutis Marmorata Telangiectatica Congenita. Hum Genet 134, 815-822, doi:10.1007/s00439-015-1561-6 (2015).
41 Kim, H. A., Yi, H. A. & Lee, H. Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss. Cerebellum 15, 781-788, doi:10.1007/s12311-015-0745-x (2016).
42 Lee, H. & Baloh, R. W. Sudden deafness in vertebrobasilar ischemia: clinical features, vascular topographical patterns and long-term outcome. J Neurol Sci 228, 99-104, doi:10.1016/j.jns.2004.10.016 (2005).
43 Yao, L. et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 304, 2611-2619, doi:10.1001/jama.2010.1830 (2010).
44 Qin, Y. et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 42, 229-233, doi:10.1038/ng.533 (2010).
45 Fu, X. et al. Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss. J Clin Invest 128, 4938-4955, doi:10.1172/JCI98058 (2018).
46 Hasson, S. A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291-295, doi:10.1038/nature12748 (2013).
47 Honlinger, A. et al. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J 15, 2125-2137 (1996).
48 Aramsangtienchai, P., Spiegelman, N. A., Cao, J. & Lin, H. S-Palmitoylation of Junctional Adhesion Molecule C Regulates Its Tight Junction Localization and Cell Migration. J Biol Chem 292, 5325-5334, doi:10.1074/jbc.M116.730523 (2017).
49 Stevens, G. et al. Global and regional hearing impairment prevalence: an analysis of 42 studies in 29 countries. Eur J Public Health 23, 146-152, doi:10.1093/eurpub/ckr176 (2013).
50 Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47, 1091-1098, doi:10.1038/ng.3367 (2015).
51 Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet 49, 834-841, doi:10.1038/ng.3841 (2017).
52 Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10, e1004383, doi:10.1371/journal.pgen.1004383 (2014).
53 Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 9, 1825, doi:10.1038/s41467-018-03621-1 (2018).
54 Saw, J. et al. Chromosome 1q21.2 and additional loci influence risk of spontaneous coronary artery dissection and myocardial infarction. Nat Commun 11, 4432, doi:10.1038/s41467-020-17558-x (2020).
55 Akcimen, F. et al. Transcriptome-wide association study for restless legs syndrome identifies new susceptibility genes. Commun Biol 3, 373, doi:10.1038/s42003-020-1105-z (2020).
56 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291-295, doi:10.1038/ng.3211 (2015).
57 Al-Khelaifi, F. et al. Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Sci Rep 9, 19889, doi:10.1038/s41598-019-56496-7 (2019).