1. Rodrigues, M. J.; Windeisen, V.; Zhang, Y.; Guédez, G.; Weber, S.; Strohmeier, M.; Hanes, J. W.; Royant, A.; Evans, G.; Sinning, I.; Ealick, S. E.; Begley, T. P.; Tews, I., Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis. Nat Chem Biol 2017, 13 (3), 290-294.
2. Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J., Current advances on structure-function relationships of pyridoxal 5'-phosphate-dependent enzymes. Frontiers Molec Biosciences 2019, 6 (4).
3. Chen, L. H.; Kenyon, G. L.; Curtin, F.; Harayama, S.; Bembenek, M. E.; Hajipour, G.; Whitman, C. P., 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J Biol Chem 1992, 267 (25), 17716-17721.
4. Subramanya, H. S.; Roper, D. I.; Dauter, Z.; Dodson, E. J.; Davies, G. J.; Wilson, K. S.; Wigley, D. B., Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases. Biochemistry 1996, 35 (3), 792-802.
5. Whitman, C. P., The 4-oxalocrotonate tautomerase family of enzymes: how nature makes new enzymes using a β–α–β structural motif. Arch Biochem Biophys 2002, 402 (1), 1-13.
6. Tchou, J.; Grollman, A. P., The catalytic mechanism of Fpg protein. Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site. J Biol Chem 1995, 270 (19), 11671-11677.
7. Sidorkina, O. M.; Laval, J., Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein. J Biol Chem 2000, 275 (14), 9924-9929.
8. Chamorro, E.; Duque-Noreña, M.; Pérez, P., A comparison between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct THEOCHEM 2009, 896 (1-3), 73-79.
9. Erkkila, A.; Majander, I.; Pihko, P. M., Iminium catalysis. Chem Rev 2007, 107 (12), 5416-70.
10. Brotzel, F.; Chu, Y. C.; Mayr, H., Nucleophilicities of primary and secondary amines in water. J Org Chem 2007, 72 (10), 3679-3688.
11. MacMillan, D. W., The advent and development of organocatalysis. Nature 2008, 455 (7211), 304-308.
12. Zou, Y. Q.; Hormann, F. M.; Bach, T., Iminium and enamine catalysis in enantioselective photochemical reactions. Chem Soc Rev 2018, 47 (2), 278-290.
13. Xiang, S. H.; Tan, B., Advances in asymmetric organocatalysis over the last 10 years. Nat Commun 2020, 11 (1), 3786.
14. Kubyshkin, V.; Budisa, N., The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis. Int. J. Molec. Sci. 2019, 20 (21), 5507.
15. Northrup, A. B.; MacMillan, D. W., Two-step synthesis of carbohydrates by selective aldol reactions. Science 2004, 305 (5691), 1752-5.
16. Hein, J. E.; Blackmond, D. G., On the Origin of Single Chirality of Amino Acids and Sugars in Biogenesis. Acc. Chem. Res. 2012, 45 (12), 2045-2054.
17. Zandvoort, E.; Baas, B.-J.; Quax, W. J.; Poelarends, G. J., Systematic Screening for Catalytic Promiscuity in 4-Oxalocrotonate Tautomerase: Enamine Formation and Aldolase Activity. ChemBioChem 2011, 12 (4), 602-609.
18. Zandvoort, E.; Geertsema, E. M.; Quax, W. J.; Poelarends, G. J., Enhancement of the promiscuous aldolase and dehydration activities of 4-oxalocrotonate tautomerase by protein engineering. Chembiochem 2012, 13 (9), 1274-1277.
19. Guo, C.; Saifuddin, M.; Saravanan, T.; Sharifi, M.; Poelarends, G. J., Biocatalytic asymmetric Michael additions of nitromethane to alpha,beta-unsaturated aldehydes via enzyme-bound iminium ion intermediates. ACS Catal 2019, 9 (5), 4369-4373.
20. Biewenga, L.; Saravanan, T.; Kunzendorf, A.; van der Meer, J. Y.; Pijning, T.; Tepper, P. G.; van Merkerk, R.; Charnock, S. J.; Thunnissen, A. W. H.; Poelarends, G. J., Enantioselective synthesis of pharmaceutically active gamma-aminobutyric acids using a tailor-made artificial Michaelase in one-pot cascade reactions. ACS Catal 2019, 9 (2), 1503-1513.
21. Nodling, A. R.; Swiderek, K.; Castillo, R.; Hall, J. W.; Angelastro, A.; Morrill, L. C.; Jin, Y.; Tsai, Y. H.; Moliner, V.; Luk, L. Y. P., Reactivity and selectivity of iminium organocatalysis improved by a protein host. Angew Chem Int Ed 2018, 57 (38), 12478-12482.
22. Santi, N.; Morrill, L. C.; Luk, L. Y. P., Streptavidin-Hosted Organocatalytic Aldol Addition. Molecules 2020, 25 (10), 2457.
23. Santi, N.; Morrill, L. C.; Swiderek, K.; Moliner, V.; Luk, L. Y. P., Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalysts. Chem Commun 2021, 57 (15), 1919-1922.
24. Xu, G.; Crotti, M.; Saravanan, T.; Kataja, K. M.; Poelarends, G. J., Enantiocomplementary epoxidation reactions catalyzed by an engineered cofactor-independent non-natural peroxygenase. Angew Chem Int Ed 2020, 59 (26), 10374-10378.
25. Dundas, C. M.; Demonte, D.; Park, S., Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013, 97 (21), 9343-9353.
26. Le, Q.; Nguyen, V.; Park, S., Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019, 103 (18), 7355-7365.
27. Mayer, C.; Dulson, C.; Reddem, E.; Thunnissen, A. W. H.; Roelfes, G., Directed evolution of a designer enzyme featuring an unnatural catalytic amino acid. Angew Chem Int Ed 2019, 58 (7), 2083-2087.
28. Drienovska, I.; Mayer, C.; Dulson, C.; Roelfes, G., A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat Chem 2018, 10 (9), 946-952.
29. Zhou, Z.; Roelfes, G., Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat Catal 2020, 3 (3), 289-294.
30. Leveson-Gower, R. B.; Zhou, Z.; Drienovská, I.; Roelfes, G., Unlocking iminium catalysis in artificial enzymes to create a Friedel–Crafts alkylase. ACS Catalysis 2021, 11 (12), 6763-6770.
31. Burke, A. J.; Lovelock, S. L.; Frese, A.; Crawshaw, R.; Ortmayer, M.; Dunstan, M.; Levy, C.; Green, A. P., Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 2019, 570 (7760), 219-223.
32. Polycarpo, C. R.; Herring, S.; Berube, A.; Wood, J. L.; Soll, D.; Ambrogelly, A., Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS letters 2006, 580 (28-29), 6695-6700.
33. Nodling, A. R.; Spear, L. A.; Williams, T. L.; Luk, L. Y. P.; Tsai, Y. H., Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays in biochemistry 2019, 63 (2), 237-266.
34. Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W., Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J Am Chem Soc 2011, 133 (30), 11418-11421.
35. Williams, T. L.; Iskandar, D. J.; Nodling, A. R.; Tan, Y.; Luk, L. Y. P.; Tsai, Y. H., Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency. Amino Acids 2021, 53 (1), 89-96.
36. Agustiandari, H.; Lubelski, J.; van den Berg van Saparoea, H. B.; Kuipers, O. P.; Driessen, A. J., LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis. J Bacteriol 2008, 190 (2), 759-763.
37. Roelfes, G., LmrR: A privileged scaffold for artificial metalloenzymes. Acc Chem Res 2019, 52 (3), 545-556.
38. Bos, J.; Fusetti, F.; Driessen, A. J.; Roelfes, G., Enantioselective artificial metalloenzymes by creation of a novel active site at the protein dimer interface. Angew Chem Int Ed 2012, 51 (30), 7472-7475.
39. Drienovska, I.; Alonso-Cotchico, L.; Vidossich, P.; Lledos, A.; Marechal, J. D.; Roelfes, G., Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem Sci 2017, 8 (10), 7228-7235.
40. Leveson-Gower, R. B.; Mayer, C.; Roelfes, G., The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019, 3 (12), 687-705.
41. Cattaneo, S.; Freakley, S. J.; Morgan, D. J.; Sankar, M.; Dimitratos, N.; Hutchings, G. J., Cinnamaldehyde hydrogenation using Au–Pd catalysts prepared by sol immobilisation. Catalysis Science & Technology 2018, 8 (6), 1677-1685.
42. Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W., Enantioselective organocatalytic hydride reduction. J Am Chem Soc 2005, 127 (1), 32-33.
43. Brogan, A. P.; Dickerson, T. J.; Janda, K. D., Nornicotine-organocatalyzed aqueous reduction of alpha,beta-unsaturated aldehydes. Chem Commun 2007, (46), 4952-4954.
44. Betanzos-Lara, S.; Liu, Z.; Habtemariam, A.; Pizarro, A. M.; Qamar, B.; Sadler, P. J., Organometallic Ruthenium and Iridium Transfer-Hydrogenation Catalysts Using Coenzyme NADH as a Cofactor. Angew. Chem. Int. Ed. 2012, 51 (16), 3897-3900.
45. Maenaka, Y.; Suenobu, T.; Fukuzumi, S., Hydrogen Evolution from Aliphatic Alcohols and 1,4-Selective Hydrogenation of NAD+ Catalyzed by a [C,N] and a [C,C] Cyclometalated Organoiridium Complex at Room Temperature in Water. J. Am. Chem. Soc. 2012, 134 (22), 9417-9427.
46. Maenaka, Y.; Suenobu, T.; Fukuzumi, S., Efficient Catalytic Interconversion between NADH and NAD+ Accompanied by Generation and Consumption of Hydrogen with a Water-Soluble Iridium Complex at Ambient Pressure and Temperature. J. Am. Chem. Soc. 2012, 134 (1), 367-374.
47. Okamoto, Y.; Köhler, V.; Ward, T. R., An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades. J. Am. Chem. Soc. 2016, 138 (18), 5781-5784.
48. Liang, A. D.; Serrano-Plana, J.; Peterson, R. L.; Ward, T. R., Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Acc. Chem. Res. 2019, 52 (3), 585-595.
49. Luk, L. Y.; Javier Ruiz-Pernia, J.; Dawson, W. M.; Roca, M.; Loveridge, E. J.; Glowacki, D. R.; Harvey, J. N.; Mulholland, A. J.; Tunon, I.; Moliner, V.; Allemann, R. K., Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proc Natl Acad Sci USA 2013, 110 (41), 16344-16349.
50. Fierke, C. A.; Johnson, K. A.; Benkovic, S. J., Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 1987, 26 (13), 4085-92.
51. Zhang, Z.; Rajagopalan, P. T.; Selzer, T.; Benkovic, S. J.; Hammes, G. G., Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Proc Natl Acad Sci USA 2004, 101 (9), 2764-2769.
52. Miller, G. P.; Benkovic, S. J., Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase. Biochemistry 1998, 37 (18), 6336-42.
53. Luk, L. Y. P.; Loveridge, E. J.; Allemann, R. K., Protein motions and dynamic effects in enzyme catalysis. Physical chemistry chemical physics : PCCP 2015, 17 (46), 30817-27.
54. Knaus, T.; Paul, C. E.; Levy, C. W.; de Vries, S.; Mutti, F. G.; Hollmann, F.; Scrutton, N. S., Better than nature: nicotinamide biomimetics that outperform natural coenzymes. J Am Chem Soc 2016, 138 (3), 1033-9.
55. Guarneri, A.; Westphal, A. H.; Leertouwer, J.; Lunsonga, J.; Franssen, M. C. R.; Opperman, D. J.; Hollmann, F.; Berkel, W. J. H.; Paul, C. E., Flavoenzyme-mediated regioselective aromatic hydroxylation with coenzyme biomimetics. ChemCatChem 2020, 12 (5), 1368-1375.
56. Jeschek, M.; Reuter, R.; Heinisch, T.; Trindler, C.; Klehr, J.; Panke, S.; Ward, T. R., Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 2016, 537 (7622), 661-665.
57. Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Kohler, V.; Lewis, J. C.; Ward, T. R., Artificial metalloenzymes: reaction scope and optimization strategies. Chem Rev 2018, 118 (1), 142-231.
58. Sawaya, M. R.; Kraut, J., Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 1997, 36 (3), 586-603.
59. Stojkovic, V.; Perissinotti, L. L.; Willmer, D.; Benkovic, S. J.; Kohen, A., Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction. J Am Chem Soc 2012, 134 (3), 1738-1745.
60. Swiderek, K.; Nodling, A. R.; Tsai, Y. H.; Luk, L. Y. P.; Moliner, V., Reaction mechanism of organocatalytic Michael addition of nitromethane to cinnamaldehyde: A case study on catalyst regeneration and solvent effects. The journal of physical chemistry. A 2018, 122 (1), 451-459.
61. Althoff, E. A.; Wang, L.; Jiang, L.; Giger, L.; Lassila, J. K.; Wang, Z.; Smith, M.; Hari, S.; Kast, P.; Herschlag, D.; Hilvert, D.; Baker, D., Robust design and optimization of retroaldol enzymes. Protein Sci 2012, 21 (5), 717-726.
62. Garrabou, X.; Beck, T.; Hilvert, D., A promiscuous de novo retro-aldolase catalyzes asymmetric Michael additions via Schiff base intermediates. Angew Chem Int Ed 2015, 54 (19), 5609-5612.
63. Obexer, R.; Godina, A.; Garrabou, X.; Mittl, P. R.; Baker, D.; Griffiths, A. D.; Hilvert, D., Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat Chem 2017, 9 (1), 50-56.
64. Hilvert, D., Design of protein catalysts. Annu Rev Biochem 2013, 82 (1), 447-470.
65. Kohler, V.; Wilson, Y. M.; Durrenberger, M.; Ghislieri, D.; Churakova, E.; Quinto, T.; Knorr, L.; Haussinger, D.; Hollmann, F.; Turner, N. J.; Ward, T. R., Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem 2013, 5 (2), 93-99.
66. Wong, C.-H.; Whitesides, G. M., Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J Am Chem Soc 2002, 103 (16), 4890-4899.
67. Sandner, D.; Krings, U.; Berger, R. G., Volatiles from Cinnamomum cassia buds. Z Naturforsch C J Biosci 2018, 73 (1-2), 67-75.