Cd has serious influences on photosynthesis [33, 34], respiration [35], nutrient metabolism, distribution and ion transport in plants [8, 36-38]. Identification of rice cultivars with low Cd accumulation in the grains is of highly theoretical and practical significant in rice breeding. Our present study confirmed that the node I of rice plant had a high capacity in Cd sequestration and accumulation. Results of our RNA-seq analyses indicated that different capacities in Cd accumulation between node I and panicle node were mediated by different gene expression pattern in different rice cultivars.
Barring Cd transport into rice grains
The high Cd accumulation in the nodes and roots of rice has been reported by Feng et al [13]. Node is the central organ of xylem to phloem transport of nutrients, ions, and metabolites [12]. It plays a vital role in Cd transport from soil to grains [14]. Previous reports showed that the accumulation of heavy metals gradually decreased in successive nodes [13, 39-41]. Cd is transported upward and accumulated in nodes, distributed in the xylem elliptical vascular bundles and the surrounding parenchyma cell bridges[14, 39]. In the present study, the accumulation of Cd in nodes is obvious, consistent with a previous report [14]. But the content of Cd in different nodes is different, so the roles of different nodes in blocking the upward transport of Cd are distinct. The high Cd content in node I indicated that most Cd was blocked here during upward transport. The Cd transport was subsequently blocked in panicle node, although to a lesser extent. Therefore, it appears that the upward transport of Cd decreases step by step from node I to panicle node, so the concerted effect of the two nodes is important for the interception of Cd in rice stem.
Key genes mediating the Cd transport and accumulation in rice node I and panicle node
Using the transcriptome data, we identified several key genes might be responsible for the Cd accumulation in node I and panicle node. For panicle node, compared with the high Cd-accumulation cultivar “y”, low Cd-accumulation cultivar “X” had lower expression of OsIRT1 and OsNramp5, but higher expression of OsVIT2 and OsNRT1.5A. Nramp5 is an Mg and Cd transporter as well as Mn and Cd uptake protein. The uptake of Cd into the root cells is primarily mediated by OsNramp5, which showed higher transport activity than its counterpart in wheat or maize [18-20]. The knockout or loss-of-function mutation of OsNramp5 dramatically reduced the accumulation of Cd and Mn without compromising yield [18, 42]. Compared with OsNramp5, OsIRT1 has a relatively small contribution to Cd uptake [17]. Cd stress reduced the expression of OsNramp5 and OsIRT1 in node I of “y”, which indicated that the Cd intake capacity faded. As for “X”, OsNramp5 and OsIRT1 were up-regulated in both node I and panicle node after Cd treatment, of which the expression still at a low level, although they were increased. This indicated that the response patterns of OsNramp5 and OsIRT1 to Cd stress were distinct between “X” and “y”, especially in node I. It is likely that “X” cultivar reduces Cd intake by maintaining a low expression level of OsNramp5 and OsIRT1 in both node I and panicle node, while “y” cultivar blocked Cd uptake mainly by reducing OsNramp5 expression in node I.
VIT2 regulates metal sequestration into vacuoles. VIT2 is up-regulated when excessive metals are available in the environment. The enhanced VIT2 expression consequently leads to higher vacuolar sequestration capacity and metal accumulation in vacuoles [43-45]. Similar to OsVIT2, OsABCC1 can concentrate heavy metal ions in vacuoles and prevent it from upward transport to the grains [5, 32, 46]. Our transcriptome data showed that OsVIT2 was up- and down-regulated in node I and panicle node in “X” cultivar, respectively. As for “y”, there were little changes in the expression of OsVIT2. In particular, the expression of OsVIT2 in node I of “y” maintained a higher level than “X”, which might explain the high content of Cd in “yN”. In addition, the expression of OsABCC1 was induced by Cd treatment in “X”, but not in “y” cultivar (Figure 5). The enhanced expression of OsABCC1 might contribute to the relatively low Cd accumulation in grains of “X” cultivar.
NRT1.5A mediated nitrate distribution plays a role in plant tolerance to Cd stress [47]. The NO3–negatively affects Cd uptake in plant roots [48, 49]. In our results, the expression pattern of OsNRT1.5A was completely different in different nodes. OsNRT1.5A in node I was several times higher than that in panicle node, which implicated that OsNRT1.5A mainly played a role in node I. Cd treatment enhanced OsNRT1.5A expression in node I in “X” cultivar, but not in “y” cultivar, which revealed a differential response in the two rice cultivars. Because NRT1 negatively regulates the uptake of Cd and other cations by simultaneously uptake of NO3– in Arabidopsis [48], our results could be explained by the same inference, as high expression of OsNRT1.5A would suppress Cd uptake in node I in “X” cultivar.
The concerted expression of aforementioned genes is likely to have a large impact on Cd accumulation in rice nodes and grains. The proposed mechanism is shown in Figure 9.
Key genes responded to the Cd stimulus in node I and panicle node
Among the DEGs related to “response to stimulus”, OsHSFA2d/B2c, OsLHC-II, and OsHSPs (including OsHSP70 and OsHSP20.0) showed higher expression in the low Cd-accumulation “X” compared with high Cd-accumulation “y” cultivar (Table S3, Figure S1). The expression of all these genes was significantly reduced by Cd treatment in “X”, but showed small or undetectable changes in “y” cultivar, indicating a relative insensitivity of “y” cultivar to Cd stress (Table S3, Figure S1). HSF and HSPs (large or small) play critical roles in plant immunity, growth, defense, and stress responses [50-53]. In rice, Cd-stress induces HSPs expression, in turns it inhibits Cd-induced damage in plant cells [54]. It has been reported that overexpression of HSP enhanced abiotic stress tolerance to heat, drought, abscisic acid, salinity and cold in rice [55]. Cai et al. (2017) reported that silencing of HSFA1a in tomato plants could block Cd uptake and reduce HSP expression, while HSFA1a overexpressing promoted HSP expression [53]. The unchanged expression of HSFs and HSPs indicated that “y” cultivar was insensitive to Cd stimulus. Likewise, the unchanged expression of OsLHC-II might indicate more stable photosynthesis, growth, and development of “y” cultivar under Cd stimulus. In addition, 6 aquaporin genes (PIPs) were expressed at higher levels in “X” than that in “y” cultivar, and down regulated by Cd treatment only in “X”, but not in “y” (Figure S1 B). Heavy metal can cause water deficit in plants, which greatly affects plant growth and productivity. The expression of PIPs is closely related to heavy metal stress, with distinct expression patterns in different plant species [23-27]. Different reports have shown that heavy metals can trigger the closure of aquaporins due to their abilities to react with the S-H group of the protein [56, 57]. In “X” cultivar, the expression of aquaporin genes was repressed by Cd stress, but no significant changes in “y” cultivar. The decreased expression of aquaporin genes triggered by heavy metals was similar to what Kholodova et al. (2011) reported [25]. The decreased activities of aquaporins lead to low transpiration rate, under which the essential mass apoplastic water flow, determined mainly by the rate of transpiration, was replaced by predominantly cell-to-cell symplastic transport [58], which is regulated at the level of membrane water channels. Our results also indicated that there were significant differences between the two rice cultivars in response to Cd stress.
Interaction relationship of miRNAs and mRNA in response to Cd stress
Among all the DEmiRNAs related to Cd accumulation, we found osa-miR408-3p, osa-miR528-3p osa-miR528-5p were commonly up-regulated by Cd stress in both nodes of the two cultivars. The effect of osa-miR528-3p has not been studied till now. Both osa-miR528 and osa-miR408 family members were differentially expressed in response to abiotic stresses, such as drought [59], low temperature [60], heavy metal [61] and plant defense responses (the reference is about drought) [62]. Cheah et al. (2015) showed that several miRNAs including osa-miR398, osa-miR397, osa-miR408-5p and osa-miR528-5p were up-regulated in the drought-susceptible rice variety [59]. This was also true for in cool-tolerant rice (Hitomebore) under cool-temperature [60]. The interaction network showed that 4 transcription factors (TFs), OsbZIP18, OsbZIP23, OsMYB5P and OsERF141, were potential target genes of aforementioned miRNAs. Interestingly, osa-miR5493 also showed a negative relationship with OS06G0253100 (OsHsp20), OS02G0203000 (OsbZIP18) and OS02G0638650 (OsERF141) only in Xiangwanxian No.12. This implied that osa-miR5493 might also be a key regulator in response to Cd stress via regulating the expression of TFs. As we know, WRKY, bZIP, ERP and MYB proteins play an important role in controlling the expression of their downstream genes in response to Cd stress[63]. The down regulation of OsERFs and OsbZIPs was also found in another rice variety after Cd stress [64]. Expression of osa-miR5493 were up-regulated after Cd treatment in “X”. Correspondingly, the unchanged expression of osa-miR5493 and these four TFs further demonstrated that “y” cultivar was insensitive to Cd stress. Consequently, we speculate that osa-miR5493 was an important miRNA in regulating the expression of OsERFs and OsbZIPs. SnRKs play an important role in plant biotic interaction in Arabidopsis thaliana. SnRK1 overexpression plants displayed enhanced resistance to geminivirus, while SnRK1 silenced plants were more susceptible than the wild-type plants [65, 66]. The higher expression of OsSnRK1 in the panicle node suggests that panicle node is the key part of “X” cultivar in response to Cd stress. In addition, SnRKs are the upstream regulatory genes of HSPs in ABA signal transduction pathway [67, 68]. Therefore, the expression changes of HSPs in panicle node of “X” cultivar may be due to the action of OsSnRK1 and osa-miR5493.