1.Ilmer Matthias, Vykoukal Jody, Recio Boiles Alejandro et al. Two sides of the same coin: stem cells in cancer and regenerative medicine. FASEB J. 2014; 28: 2748-61. doi:10.1096/fj.13-244640.
2.De Francesco Francesco, Ricci Giulia, D'Andrea Francesco et al. Human Adipose Stem Cells: From Bench to Bedside. Tissue Eng Part B Rev. 2015; 21: 572-84. doi: 10.1089/ten.TEB.2014.0608.
3.Freese Kyle E,Kokai Lauren,Edwards Robert P et al. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Res. 2015; 75: 1161-8. doi: 10.1158/0008-5472.CAN-14-2744.
4.Kapur Sahil K, Katz Adam J. Review of the adipose derived stem cell secretome. Biochimie. 2013; 95: 2222-8. doi: 10.1016/j.biochi.2013.06.001.
5.Alperovich M, Lee Z H, Friedlander P L et al. Adipose stem cell therapy in cancer reconstruction: a critical review. Ann Plast Surg. 2014; 73. doi: 10.1097/SAP.0000000000000283.
6.Huang Wen-Chia, Lu I-Lin, Chiang Wen-Hsuan et al. Tumortropic adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and dual-modality therapy of orthotopic glioblastoma. J Control Release. 2017; 254: 119-130. doi: 10.1016/j.jconrel.2017.03.035.
7.Herea Dumitru-Daniel, Labusca Luminita, Radu Ecaterina et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting. Mater Sci Eng C Mater Biol Appl. 2019; 94: 666-676. doi: 10.1016/j.msec.2018.10.019.
8.Donnenberg Vera S, Zimmerlin Ludovic, Rubin Joseph Peter et al. Regenerative therapy after cancer: what are the risks?. Tissue Eng Part B Rev. 2010; 16: 567-75. doi: 10.1089/ten.TEB.2010.0352.
9.Lin Guiting, Yang Rong, Banie Lia et al. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate. 2010; 70: 1066-73. doi: 10.1002/pros.21140.
10.Kalluri Raghu, Zeisberg Michael. Fibroblasts in cancer. Nat. Rev. Cancer. 2006, 6: 392-401. doi: 10.1038/nrc1877.
11.Jotzu Constantin, Alt Eckhard, Welte Gabriel et al. Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 2011; 34: 55-67. doi: 10.1007/s13402-011-0012-1.
12.Koellensperger Eva, Gramley Felix, Preisner Fabian et al. Alterations of gene expression and protein synthesis in co-cultured adipose tissue-derived stem cells and squamous cell-carcinoma cells: consequences for clinical applications. Stem Cell Res Ther. 2014; 5: 65. doi: 10.1186/scrt454.
13.Rouhani Panta, Fletcher Christopher D M, Devesa Susan S et al. Cutaneous soft tissue sarcoma incidence patterns in the U.S. : an analysis of 12,114 cases. Cancer. 2008; 113: 616-27. doi: 10.1002/cncr.23571.
14.Christopher K. Bichakjian. Dermatofibrosarcoma protuberans: clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network: JNCCN. 2019; 2(1), MS-2-3.
15.Ratner D, Thomas C O, Johnson T M et al. Mohs micrographic surgery for the treatment of dermatofibrosarcoma protuberans. Results of a multiinstitutional series with an analysis of the extent of microscopic spread. J. Am. Acad. Dermatol. 1997; 37: 600-13. doi: 10.1016/s0190-9622(97)70179-8.
16.Criscione Vincent D, Weinstock Martin A, Descriptive epidemiology of dermatofibrosarcoma protuberans in the United States, 1973 to 2002. J. Am. Acad. Dermatol. 2007; 56: 968-73. doi: 10.1016/j.jaad.2006.09.006.
17.Pennati Angela, Riggio Egidio, Marano Giuseppe et al. Autologous fat grafting after sarcoma surgery: Evaluation of oncological safety. J Plast Reconstr Aesthet Surg. 2018; 71: 1723-1729. doi: 10.1016/j.bjps.2018.07.028.
18.Liang Chun-Chi, Park Ann Y, Guan Jun-Lin, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007; 2: 329-33. doi: 10.1038/nprot.2007.30.
19.Ponce M Lourdes. Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol. Biol. 2009; 467: 183-8.
20.Peach M, Marsh N, Macphee DJ. Protein solubilization: attend to the choice of lysis buffer. Methods Mol Biol. 2012; 869:37-47. doi: 10.1007/978-1-61779-821-4_4.
21.Bourin Philippe, Bunnell Bruce A, Casteilla Louis et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013; 15: 641-8. doi: 10.1016/j.jcyt.2013.02.006.
22.Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001; 411(6835):375-379. doi: 10.1038/35077241.
23.Muehlberg Fabian L, Song Yao-Hua, Krohn Alexander et al. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009; 30: 589-97. doi: 10.1093/carcin/bgp036.
24.Dvorak H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine. 1986; 315(26):1650. doi: 10.1056/NEJM198612253152606.
25.Kucerova Lucia, Altanerova Veronika, Matuskova Miroslava et al. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 2007; 67: 6304-13. doi: 10.1158/0008-5472.CAN-06-4024.
26.Hanahan Douglas, Weinberg Robert A. Hallmarks of cancer: the next generation .Cell. 2011; 144: 646-74. doi: 10.1016/j.cell.2011.02.013.
27.Iser Isabele C, Ceschini Stefanie M, Onzi Giovana R et al. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro. Mol. Neurobiol. 2016; 53: 7184-7199. doi: 10.1007/s12035-015-9585-4.
28.Preisner Fabian, Leimer Uwe, Sandmann Stefanie et al. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-culture Model. Stem Cell Rev Rep. 2018; 14: 125-140. doi: 10.1007/s12015-017-9772-y.
29.Koellensperger Eva, Bonnert Lilly-Claire, Zoernig Inka et al. The impact of human adipose tissue-derived stem cells on breast cancer cells: implications for cell-assisted lipotransfers in breast reconstruction. Stem Cell Res Ther. 2017; 8: 121. doi: 10.1186/s13287-017-0579-1.
30.Catalano Veronica, Turdo Alice, Di Franco Simone et al. Tumor and its microenvironment: a synergistic interplay. Semin. Cancer Biol. 2013; 23: 522-32. doi: 10.1016/j.semcancer.2013.08.007.
31.Jing Yingying, Han Zhipeng, Liu Yan et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS ONE. 2012; 7: e43272. doi: 10.1371/journal.pone.0043272.
32.Karnoub Antoine E, Dash Ajeeta B, Vo Annie P et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007; 449: 557-63. doi: 10.1038/nature06188.
33.Smits A, Funa K, Vassbotn F S et al. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin. Am. J. Pathol. 1992; 140: 639-48.
34.Pedeutour F, Simon M P, Minoletti F et al. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res. 1995; 55: 2400-3.
35.Pedeutour F, Simon M P, Minoletti F et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenetic and Genome Research. 1996; 72(2-3):171-174.
36.Rutkowski Piotr, Van Glabbeke Martine, Rankin Cathryn J et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J. Clin. Oncol., 2010; 28: 1772-9. doi: 10.1200/JCO.2009.25.7899.
37.Shimizu A, O'Brien K P, Sjöblom T et al. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999; 59: 3719-23.
38.Blatti S P, Foster D N, Ranganathan G, et al. Induction of fibronectin gene transcription and mRNA is a primary response to growth-factor stimulation of AKR-2B cells. Proceedings of the National Academy of Sciences. 1988; 85(4):1119-1123.
39.Alvares O, Klebe R, Grant G, et al. Growth Factor Effects on the Expression of Collagenase and TIMP-1 in Periodontal Ligament Cells. Journal of Periodontology. 1995; 66(7):552-558.
40.Fabunmi R P, Baker A H, Murray E J et al. Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic smooth muscle cells. Biochemical Journal. 1996, 315(1):335-342.
41.Folkman, Judah. Angiogenesis: an organizing principle for drug discovery?. Nature reviews drug discovery. 2007; 6(4):273-286. doi:10.1038/nrd2115.
42.Abramsson Alexandra, Lindblom Per, Betsholtz Christer. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 2003; 112: 1142-51. doi:10.1172/JCI18549.
43.Hellström M, Kalén M, Lindahl P et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999; 126: 3047-55.
44.O Potapova, H Fakhrai, D Mercola. Growth factor PDGF-B/v-sis confers a tumorigenic phenotype to human tumor cells bearing PDGF receptors but not to cells devoid of receptors: evidence for an autocrine, but not a paracrine, mechanism. international journal of cancer. 2010; 66(5):669-677.
45.Ostman A , Heldin C H . Involvement of platelet-derived growth factor in disease: Development of specific antagonists. Advances in Cancer Research, 2001, 80:1-38. doi: 10.1016/s0065-230x(01)80010-5.
46.Simon M P , Navarro M , Roux, Danièle et al. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in Dermatofibrosarcoma Protuberans (DP). oncogene. 2001; 20(23):2965-2975.doi: 10.1038/sj.onc.1204426.
47.Zhang Z, Wang Y, Zhang J et al. COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway. Molecular Medicine Reports. 2018. doi: info:doi/10.3892/mmr.2018.8533.
48.Zhang Ying, Lin Lianjie, Jin Yu et al. Overexpression of WNT5B promotes COLO 205 cell migration and invasion through the JNK signaling pathway. Oncol Rep. 2016; 36: 23-30. doi: 10.3892/or.2016.4772.
49.Liu Jing, Shen Jia-Xin, Wu Hua-Tao et al. Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov Med. 2018; 25: 211-223.
50.Nyberg Pia, Salo Tuula, Kalluri Raghu. Tumor microenvironment and angiogenesis. Front. Biosci. 2008; 13: 6537-53. doi:10.2741/3173.
51.Kim K J, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993; 362(6423):841-844. doi:10.1038/362841a0.
52.Scavelli C , Vacca A , Di Pietro G et al. Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia. 2004; 18(6):1054-1058. doi:10.1038/sj.leu.2403355.
53.Adams R H , Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. NATURE REVIEWS MOLECULAR CELL BIOLOGY. 2007; 8(6):464-478. doi:10.1038/nrm2183.
54.Mercurio A M, Bachelder R E, Bates R C et al. Autocrine signaling in carcinoma: VEGF and the α6β4 integrin. seminars in cancer biology. 2004; 14(2):115-122. doi:10.1016/j.semcancer.2003.09.016.
55.M. J. Cross. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. trends in pharmacological sciences. 2001; 22(4):201-207. doi:10.1016/S0165-6147(00)01676-X.
56.Pepper M S, Ferrara N, Orci L et al. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical & Biophysical Research Communications. 1993; 189(2):824-831.
57.Gherardi E, Gray J, Stoker M et al. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proceedings of the National Academy of ences. 1989; 86(15):5844-5848.
- Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992; 119: 629-64.
59.Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E, Mildner M, Weninger W, Nakamura T, Tschachler E, Binder BR. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Invest. 1999; 79: 427-438. doi:10.1007/s001090050366.
60.Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, Schwall R, Ferrara N, Gerritsen ME. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001; 158: 1111-1120. doi:10.1016/S0002-9440(10)64058-8.
61.Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation. 1998; 97: 381–390. doi:10.1161/01.CIR.97.4.381.