1 Hund, F. Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel. Z. Phys. 33, 345–371 (1925).
2 Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).
3 Baldo, M., Lamansky, S., Burrows, P., Thompson, M. & Forrest, S. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).
4 Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).
5 Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).
6 Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).
7 Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).
8 Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys. Rev. B 62, 10967 (2000).
9 Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).
10 Schmidbauer, S., Hohenleutner, A. & König, B. Chemical degradation in organic light‐emitting devices: Mechanisms and implications for the design of new materials. Adv. Mater. 25, 2114–2129 (2013).
11 Lee, J. et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 8, 1–9 (2017).
12 Slater, J. C. The theory of complex spectra. Phys. Rev. 34, 1293 (1929).
13 Ziegler, T., Rauk, A. & Baerends, E. J. On the calculation of multiplet energies by the hartree-fock-slater method. Theor. Chem. Acc. 43, 261–271 (1977).
14 Leupin, W. & Wirz, J. Low-lying electronically excited states of cycl [3.3.3]azine, a bridged 12p-perimeter. J. Am. Chem. Soc. 102, 6068–6075 (1980).
15 Leupin, W., Magde, D., Persy, G. & Wirz, J. 1,4,7-Triazacycl[3.3.3]azine: basicity, photoelectron spectrum, photophysical properties. J. Am. Chem. Soc. 108, 17–22 (1986).
16 Ehrmaier, J. et al. Singlet–triplet inversion in heptazine and in polymeric carbon nitrides. J. Phys. Chem. A 123, 8099–8108 (2019).
17 de Silva, P. Inverted singlet–triplet gaps and their relevance to thermally activated delayed fluorescence. J. Phys. Chem. Lett. 10, 5674–5679 (2019).
18 Sanz-Rodrigo, J., Ricci, G., Olivier, Y. & Sancho-Garcia, J.-C. Negative Singlet–Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting. J. Phys. Chem. A 125, 513–522 (2021).
19 Ricci, G., San‐Fabián, E., Olivier, Y. & Sancho‐García, J.-C. Singlet‐triplet excited‐state inversion in heptazine and related molecules: assessment of TD‐DFT and ab initio methods. ChemPhysChem 22, 553–560 (2021).
20 Pollice, R., Friederich, P., Lavigne, C., dos Passos Gomes, G. & Aspuru-Guzik, A. Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates. Matter, in press (2021). https://doi.org/10.1016/j.matt.2021.02.017
21 Li, J. et al. Highly efficient organic light‐emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative. Adv. Mater. 25, 3319–3323 (2013).
22 Li, J., Zhang, Q., Nomura, H., Miyazaki, H. & Adachi, C. Thermally activated delayed fluorescence from 3nπ* to 1n π* up-conversion and its application to organic light-emitting diodes. Appl. Phys. Lett. 105, 013301 (2014).
23 Galmiche, L., Allain, C., Le, T., Guillot, R. & Audebert, P. Renewing accessible heptazine chemistry: 2,5,8-tris (3, 5-diethyl-pyrazolyl)-heptazine, a new highly soluble heptazine derivative with exchangeable groups, and examples of newly derived heptazines and their physical chemistry. Chem. Sci. 10, 5513–5518 (2019).
24 Le, T., Galmiche, L., Masson, G., Allain, C. & Audebert, P. A straightforward synthesis of a new family of molecules: 2,5,8-trialkoxyheptazines. Application to photoredox catalyzed transformations. Chem. Commun. 56, 10742–10745 (2020).
25 Elliott, P., Goldson, S., Canahui, C. & Maitra, N. T. Perspectives on double-excitations in TDDFT. Chem. Phys. 391, 110–119 (2011).
26 Stanton, J. F. & Bartlett, R. J. The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98, 7029–7039 (1993).
27 Data, P. et al. Dibenzo [a,j]phenazine‐Cored Donor–Acceptor–Donor Compounds as Green‐to‐Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters. Angew. Chem. Int. Ed. 55, 5739–5744 (2016).
28 Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).
29 Zeng, W. et al. Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8‐Naphthalimide‐Acridine Hybrids. Adv. Mater. 30, 1704961 (2018).
30 Wu, T.-L. et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photonics 12, 235–240 (2018).
31 Dos Santos, P. L. et al. Triazatruxene: A Rigid Central Donor Unit for a D–A3 Thermally Activated Delayed Fluorescence Material Exhibiting Sub‐Microsecond Reverse Intersystem Crossing and Unity Quantum Yield via Multiple Singlet–Triplet State Pairs. Adv. Sci. 5, 1700989 (2018).
32 Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13, 678–682 (2019).
33 Hamze, R. et al. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019).
34 Kim, J. U. et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nat. Commun. 11, 1–8 (2020).
35 Cui, L.-S. et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 14, 636–642 (2020).
36 Wada, Y., Nakagawa, H., Matsumoto, S., Wakisaka, Y. & Kaji, H. Organic light emitters exhibiting very fast reverse intersystem crossing. Nat. Photonics 14, 643–649 (2020).
37 Lim, H. et al. Highly Efficient Deep‐Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. Adv. Mater. 32, 2004083 (2020).
38 Aizawa, N., Matsumoto, A. & Yasuda, T. Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence. Sci. Adv. 7, eabe5769 (2021).
39 Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).
40 Schirmer, J. Beyond the random-phase approximation: A new approximation scheme for the polarization propagator. Phys. Rev. A 26, 2395 (1982).
41 Andersson, K., Malmqvist, P. Å. & Roos, B. O. Second-order perturbation theory with a complete active space self‐consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992).
42 Parker, C. & Hatchard, C. Triplet-singlet emission in fluid solutions. Phosphorescence of eosin. Trans. Faraday Soc. 57, 1894–1904 (1961).
43 Parker, C. Sensitized P-type delayed fluorescence. Proc. R. Soc. London Ser. A 276, 125–135 (1963).
44 Nowy, S., Krummacher, B.C., Frischeisen, J., Reinke, N.A., Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J. Appl. Phys. 104, 123109 (2008).
45 Lee, M.-T., Chen, H.-H., Liao, C.-H., Tsai, C.-H. & Chen, C. H. Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene. Appl. Phys. Lett. 85, 3301–3303 (2004).
46 Pu, Y.-J. et al. Absence of delayed fluorescence and triplet–triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes. J. Mater. Chem. C 7, 2541–2547 (2019).
47 Nakagawa, T., Okamoto, K., Hanada, H. & Katoh, R. Probing with randomly interleaved pulse train bridges the gap between ultrafast pump-probe and nanosecond flash photolysis. Opt. Lett. 41, 1498–1501 (2016).
48 Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics 6, 253–258 (2012).
49 Haase, N. et al. Kinetic Modeling of Transient Photoluminescence from Thermally Activated Delayed Fluorescence. J. Phys. Chem. C 122, 29173–29179 (2018).
50 Kondakov, D. Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives. J. Appl. Phys. 102, 114504 (2007).