3.1. Autocorrelation analysis
Before analyzing the trends in the temperature time series, we investigate the autocorrelation as suggested by Hamed and Rao (1998) and Serinaldi and Kilsby (2016). The autocorrelation is checked at the different annual, seasonal and monthly time steps. Fig.2 represents the auto-correlogram for each station, the autocorrelation coefficient was determined for a lag-1. The temperature series is autocorrelated to the significance threshold of 5% when its value is above (below) that of the upper (lower) limit. The results highlight the presence of an auto-correlation for all the annual average temperature series. At the seasonal scale, the autocorrelation is observed in autumn, spring and summer at the stations of Algiers, Annaba, Oran and Constantine, while it is observed in spring and summer at Mascara and only in autumn at Djelfa station. Winter temperature series are not auto-correlated for all stations.
On a monthly scale, the presence of autocorrelation in the data series differs from one station to another (fig.2). The monthly temperatures for April, June, July, and August are autocorrelated at Algiers station, while at Annaba and Constantine stations, autocorrelation is observed only in August and October. It is at Oran station that autocorrelation is strongly present since it is detected within the monthly series going from March to August. The monthly data series for March, June and August are also autocorrelated at the Mascara station, contrary to the Djelfa station which is characterized by the absence of autocorrelation on a monthly scale. The results also show that the autocorrelation detected within the different data series is positive, which according to Hamed and Rao (1995) which would further increase the probability of detecting a trend then it does not exist (Serinaldi and Kilsby 2016). It therefore becomes essential to eliminate autocorrelation to analyze temperature trends, by applying the different methods illustrated in section (2.4).
3.2. Temperature trend analysis
The Mann-kendall test is most often used to analyze trends in a time series data. However, the presence of autocorrelation may influence the results obtained. For this purpose, we analyzed the trend of the mean temperature series using the original Mann Kendall test as well as six other MMK tests developed using different approaches in order to eliminate the effect of autocorrelation. It is a question of comparing for each station the results of the Z obtained by the seven statistical tests with the different time steps annual, seasonal, and monthly, only for the auto-correlated series. When the series is not auto-correlated, only the original Mann-Kendall test is applied. A trend is said to be significant when Z is greater (or less) than 1.96 (-1.96). The sen slope is also calculated to measure the magnitude of warming (or to quantify the variation in temperatures by decades).
In Algiers station, the analysis of the trend in annual temperatures series by the MK test highlights a significant positive trend (Z = 3.99) (table 2). This time series is autocorrelated and eliminating the effect of autocorrelation using the different approaches of MMK also showed the presence of a positively significant trend except the LTP test (table2). The results show a slight decrease in the Z value after elimination of the autocorrelation and removing the effect of the Hurst coefficient (H) compared with the original MK (2.97 <Z <3.13) except for the TFPW method which shows an increase in the Z (Z = 4.69). However, the LTP method show the presence of long-term persistence (H=0.73 with P-value=0.001) and their removal from the time series made the trend not significative (Z = 1.53). The Sen slope indicates an increase of 0.16 °C/decades of annual temperatures.
On a seasonal scale, all statistical tests show a positive non-significant trend in winter, with a Z which varies between 0.7 and 0.8. In spring, the MK, TFPW and MMKY tests show a positive significant trend in the temperatures autocorrelated series (1.98 <Z <2.87), while the TFPW-cu and MMKH tests do not show a significant trend, the Z value being 1.56 and 1.63 respectively. The LTP method show the presence of long-term persistence (H=0.75 with P-value=0.000) and their removal from the time series made the trend not significative (Z = 0.98). The Sen slope shows an increase in temperatures of 0.13°C/ decade. In summer, all of the statistical tests indicate a positive significant trend (3.74 <Z <4.51) with the absence of long-term persistence (Z-LTP = 2.52). The autocorrelation observed in this data series had no effect on the result obtained by the original MK, which shows the magnitude of the trend during this season which results in an increase of 0.3°C/decade. In autumn, an increase of 0.17 °C/decade is observed. Indeed, the original MK test indicates a positive significant trend (Z = 3.37). Analysis of the temperatures after elimination of the autocorrelation by the PW, TFPW, TFPW-cu, MMKH and MMKY tests also shows a significant trend, the values of Z are respectively 2.68, 3.46, 2.72, 2.52, 2.92. However, the LTP method show the presence of long-term persistence (H=0.64 with P-value=0.025) and their removal from the time series made the trend not significative (Z = 1.73).
On a monthly scale, all the statistical tests show a positive trend without significance in January, March, September, November and December, while a non-significant negative trend is observed in February. MK test shows significant positive trend in April (Z=2.83). Even if the elimination of the autocorrelation effect by the various tests indicates a decrease in the Z value (2.20 <Z <2.82), the trend remains significant, which shows the extent of the warming during this month which is 0.17 °C/decade. In contrast, the LTP method show the presence of long-term persistence (H=0.67 with P-value=0.007) and their removal from the time series made the trend not significative (Z = 1.29). In May, the Mann-Kendall test highlights a significant positive trend (Z = 2.25) which results in an increase in temperatures of around 0.2 °C/decade. The monthly autocorrelated temperatures observed in June, July and August indicate a significant positive trend by all of the statistical tests as well as the presence of long-term persistence. The registered ZLTP is 2.13 (June), 2.85 (July) and 2.13 (August) respectively (see Table xx). The impact of global warming in the summer months translates into a dramatic rise in temperatures of around 0.3°C/decade. The month of October recorded a significant positive trend much more important than the other months which is manifested by a significant rise in temperatures of around 0.33°C/decade.
In Annaba station, the analysis of annual temperatures by the M-K test highlights a significant positive trend (Z = 4.03) (table 2). The elimination of autocorrelation by the PW, TFPW, TFPW-cu, MMKH and MMKY tests also shows a positive trend, the Z statistic is 2.17, 4.04, 2.18, 2.62, 3,22 respectively. On the other hand, a presence of long-term persistence is detected (H=0.69 with P-value=0.004) and their removal from the time series made the trend not significative (Z = 1.75). The Sen slope indicates an increase of 0.13°C/decade.
On a seasonal scale, all of the statistical tests indicate a positive trend without significance in winter temperatures series (0.81 <Z <1.20). In spring, a significant positive trend is observed, including after eliminating the effect of autocorrelation (2.15 <Z <4.34). However, the LTP method show the presence of long-term persistence (H=0.66 with P-value=0.012) and their removal from the time series made the trend not significative (Z = 1.69). The recorded Sen slope is around 0.14°C/ decade. In summer and in Autumn, a significant positive trend is detected by all of the statistical tests, which translates into an increase of around 0.2°C/decade. The elimination of autocorrelation did not influence the result obtained by MK (see fig.) and the LTP test reveals long-term persistence in autumn (H=0.62 with P-value=0.042) and despite their elimination the trend remains significative (Z = 2.05).
On a monthly scale, all of the statistical tests indicate a positive non-significant trend in January, March, September, November and December, as well as a non-significant negative trend in February. In April and May a significant positive trend be highlighted by all the statistical tests (see fig.) which manifests itself by an increase of about 0.2 ° C / decade. No long-term persistence is detected in April and May, which register a Z of 2.05 and 2.11 respectively. All of the statistical tests show a significant positive trend in June and July, which recorded an increase of 0.18 and 0.23 °C/decade respectively.
On the other hand, long-term persistence is detected only in August (H=0.6 with P-value=0.042). Analysis of the autocorrelated time series of temperatures for the month of August by the MK test shows a positive significant trend (Z = 2.42). The TFPW, MMKH and MMKY tests show the same result, contrary to the PW and TFPW-cu and LTP tests which indicate the absence of a significant trend after elimination of the effect of autocorrelation and long-term persistence. The month of October recorded a significant increase in temperatures of about 0.3 ° C / decade. All the statistical tests show a significant trend in the autocorrelated time series (2.96 <Z <3.88) as well as the absence of long-term persistence (Z = 2.64).
At Oran station, the analysis of annual temperatures by the MK test shows a significant positive trend (Z = 3.69) (table 2). The two prewhitening methods PW and TFPW-cu highlight the absence of a significant trend with a Z values of 1.69 and 1.86 respectively, while the tests TFPW, MMKH and MMKY respectively show a significant trend with a Z values of 3.95, 1.98, 2.63. Whereas, the LTP method show the presence of long-term persistence (H=0.8 with P-value=0.00) and their removal from the time series made the trend not significative (Z = 1.17). The Sen slope indicates an increase of 0.14°C /decade of annual temperatures
On a seasonal scale, all of the statistical tests show a positive trend without significance in winter temperatures (1.03 <Z <1.31). In spring, the autocorrelated temperature series shows a significant positive trend (ZMK = 3.07) characterized by an increase of 0.16 °C/ decade. The elimination of the effect of autocorrelation by the tests PW, TFPW-cu and MMKH, LTP respectively show a Z of 1.49, 1.54, 1.64 and 0.92, while the tests TFPW and MMKY respectively indicate a Z of 3.33 and 2.12. In this case, the methods developed by Von storch (1995), Serinaldi and kilsby (2016) and Hamed and Rao (1998) are the most effective in eliminating the effect of autocorrelation. In summer, all of the statistical tests show a significant positive trend (2.18 <Z <3.23) in the auto-correlated temperature series and is manifested by an increase of 0.18 °C/decade. However, the elimination of the long-term persistence made the trend not significative (ZLtp = 1.52). In the autumn season, the analysis of the autocorrelated time series by the MK test shows a significant positive trend characterized by an increase of 0.13°C/decade. On the other hand, the PW and TFPW-cu tests indicate a non-significant trend (Z = 1.93), while the TFPW, MMKH and MMKY tests show a Z of 2.60, 2.23 and 2.09 respectively and the elimination of the long-term persistence made the trend not significative (ZLtp = 1.30).
On a monthly scale, the analysis of the temperature series in January, February, March, November and December by all the statistical tests show a positive trend without significance as well as the presence of long-term persistence in March.
In April, the autocorrelated temperature series shows a significant positive trend accompanied by an increase of 0.2°C/decade. The statistic Z calculated for the MK, TFPW, TFPW-cu, MMKH and MMKY tests is 3.28, 3.34, 2.03, 3.89 and 2.77 respectively, while the PW test highlights an insignificant trend (Z = 1.83) and the LTP does detect long-term persistence (H=0.63 with P-value=0.027 and ZLTP = 1.70).
Analysis of the May temperature series by the MK test reveals a significant positive trend characterized by an increase of 0.18 °C/decade, while all of the approaches used to eliminate the autocorrelation effect and the LTP indicate a non-significant trend (see fig.) except the TFPW method (Z = 2.38). In June and July all statistical tests (except LTP) indicate a significant positive trend even after elimination of the autocorrelation effect (table 2). These two months recorded an increase of 0.25 and 0.2°C/decade respectively.
Analysis of the temperature series for the month of August shows a significant positive trend detected by all of the statistical tests except TFPW-cu which indicates a Z of 1.95 as well as the presence of long-term persistence (H=0.62 with P-value=0.052 and ZLTP = 1.50). The Sen slope shows an increase in temperatures of 0.14 °C/decade. The MK test indicates a significant positive trend in temperatures observed in September and October, which manifests itself respectively by an increase of 0.13 and 0.27°C/decade.
At Constantine station, the analysis of trends in annual temperatures by all the statistical tests shows a significant positive trend which results in an increase of 0.16°C/decade. On the other hand, LTP does not detect long-term persistence (H=0.48 with P-value=0.617 and ZLTP = 1.61).
On a seasonal scale, the winter temperatures observed in Constantine indicate a positive trend without significance (see fig.). In spring, the temperature analysis by the MK test shows a significant positive trend characterized by an increase of 0.2 °C/decade. After eliminating the autocorrelation effect, the TFPW, MMKH and MMKY tests always indicate the presence of the significant trend, unlike the PW and TFPW-cu tests which show an insignificant trend and record a Z value respectively of 1.94 and 1.89. The elimination of the long-term persistence made the trend not significative (Z=1.71).
In summer season, an increase of 0.27°C/decade of temperatures is observed. In fact, all of the statistical tests (except LTP) show a significant positive trend in temperatures, which highlights the extent of the warming during this season (see fig.). In autumn, the analysis of the autocorrelated series of temperatures by the MK, TFPW, MMKH and MMKY tests shows a significant positive trend (2.09 <Z <2.70), while the PW and TFPW-cu tests indicate a positive trend without significance with the statistic Z is 1.74 and 1.79 respectively. The elimination of the long-term persistence also made the trend not significative (Z=1.13). However, the Sen slope indicates an increase of 0.15 °C/decade.
At a monthly scale, the Mann-Kendall test shows a non-significant positive trend in January, March, November and December and a non-significant negative trend in February and September (see fig.). The months of April, May, June and July recorded increases of 0.26, 0.27, 0.31 and 0.29 °C/decade, respectively. Indeed, the Mann-kendall test (as well as the other tests) shows a significant positive trend (see fig.). Analysis of the autocorrelated temperature series for the month of August by the MK, TFPW, MMKH and MMKY tests shows a significant positive trend (2.03 <Z <2.68), while the PW and TFPW-cu tests do not show significant trend and indicate a Z of 1.60 and 1.75 respectively. The Sen slope shows an increase of 0.2°C/decade. In October, all of the statistical tests show a positive trend in the autocorrelated temperature series (254 <Z <3.41) as well as the absence of long-term persistence (H= pvalue= Z = 2.13). The Sen slope indicates a significant increase in temperatures of around 0.4°C/decade which shows the extent of the warming during this month.
In Mascara station, the analysis of annual temperatures (autocorrelated series) during the period 1977-2016 by all of the statistical tests shows a significant positive trend which results in an increase of 0.4°C/decade (table 2). However, the LTP method show the presence of long-term persistence (H=0.7 with P-value=0.009) and their removal from the time series made the trend not significative (Z = 1.81).
On a seasonal scale, temperatures do not show a significant trend in winter, while in spring and summer (autocorrelated series) a significant positive trend is demonstrated by all of the statistical tests which are reflected respectively by an increase of 0.55 and 0.67 °C/decade. The LTP test also indicates the absence of long-term persistence in spring (H=0.37 with P-value=0.778) and summer (H=0.52 with P-value=0.294) which have a significative trend with Z of 4.01 and 2.68 respectively. The elimination of the autocorrelation effect did not influence the temperature trend given the extent of warming observed in spring and summer. The MK test also indicates a positive trend in temperatures in autumn, which is manifested by an increase of 0.38 °C/decade.
On a monthly scale, the MK test highlights an insignificant trend in temperatures in January, February, March, September, November and December. The temperatures observed in April and May show a significant positive trend (see fig.) which reflects respectively into an increase of 0.54 and 0.92°C/decade. In June, the MK test shows a significant positive trend in temperatures which is manifested by an increase of 0.74 °C/decade. This trend also persists after eliminating autocorrelation, which shows the extent of the warming during this month. A significant positive trend is also observed in July, the Sen slope associated with the MK test shows an increase of 0.78°C / decade. In August, the MK, TFPW, MMKH and MMKY tests show a significant positive trend while the PW and TFPW-cu tests show a non-significant trend. The Sen slope associated with the MK test shows an increase of 0.61 °C/decade. The MK test shows a significant positive trend in temperatures in October accompanied by an increase of around 0.7°C/ decade. the LTP method show the presence of long-term persistence only for June (H=0.63 with P-value=0.047) and September (H=0.64 with P-value=0.041) and their removal from the time series made the trend not significative (Z = 1.81 and Z=0.68).
The annual temperatures observed at Djelfa station during the period 1972-2016 show a significant positive trend detected by all of the statistical tests as well as the absence of long-term persistence, which confirms the magnitude of the trend (table 2). The Sen slope associated with the MK test indicates an increase of about 0.3°C/decade.
Table 2: Mann-Kendall Z value and sen’s slope. The significant trends at the 95% confidence level are shown in bold.
tests
|
Jan.
|
Fev.
|
Mar.
|
Apr.
|
Mai
|
Juin
|
Jul.
|
Aug.
|
Sep.
|
Oct.
|
Nov.
|
Dec.
|
DJF
|
MAM
|
JJA
|
SON
|
an
|
Algiers
|
Z-MK
|
1,14
|
- 0,70
|
0,69
|
2,83
|
2,25
|
3,79
|
4,17
|
3,35
|
1,78
|
3,49
|
0,65
|
0,43
|
0,77
|
2,70
|
4,51
|
3,37
|
3,99
|
Z-PW
|
1,07
|
- 0,60
|
0,21
|
2,20
|
2,01
|
2,87
|
3,57
|
2,83
|
1,48
|
3,15
|
0,80
|
0,39
|
0,69
|
1,42
|
3,74
|
2,68
|
2,99
|
tfpw
|
1,03
|
- 0,60
|
0,37
|
2,82
|
2,40
|
4,10
|
4,57
|
3,67
|
1,90
|
3,64
|
0,79
|
0,31
|
0,70
|
2,87
|
5,10
|
3,46
|
4,69
|
tfpw-cu
|
|
|
|
2,26
|
2,01
|
2,91
|
3,56
|
2,86
|
1,44
|
3,14
|
|
|
|
1,56
|
3,80
|
2,72
|
2,97
|
mmkh
|
1,14
|
- 0,98
|
0,72
|
2,32
|
1,97
|
3,03
|
4,91
|
3,35
|
1,32
|
2,72
|
0,65
|
0,43
|
NaN
|
1,63
|
3,68
|
2,52
|
3,04
|
MMKY
|
1,14
|
- 0,77
|
0,59
|
2,33
|
2,10
|
3,35
|
4,01
|
3,05
|
1,55
|
3,88
|
0,67
|
0,55
|
0,78
|
1,98
|
4,13
|
2,92
|
3,13
|
MK-LTP
|
H Estimate
|
0,36
|
0,37
|
0,58
|
0,67
|
0,57
|
0,60
|
0,54
|
0,56
|
0,57
|
0,49
|
0,50
|
0,40
|
0,42
|
0,75
|
0,61
|
0,64
|
0,73
|
P-value for H
|
0,38
|
0,43
|
0,10
|
0,01
|
0,15
|
0,06
|
0,24
|
0,15
|
0,12
|
0,58
|
0,50
|
0,71
|
0,88
|
0,00
|
0,05
|
0,03
|
0,00
|
MK-LTP
|
1,40
|
-0,84
|
0,42
|
1,29
|
1,43
|
2,13
|
2,85
|
2,13
|
1,10
|
2,83
|
0,51
|
0,46
|
0,76
|
0,98
|
2,52
|
1,73
|
1,53
|
Sen's Slope
|
0,08
|
-0,06
|
0,04
|
0,17
|
0,20
|
0,29
|
0,32
|
0,27
|
0,11
|
0,33
|
0,04
|
0,04
|
0,03
|
0,13
|
0,3
|
0,17
|
0,16
|
Annaba
|
Z-MK
|
|
1,78
|
- 0,24
|
0,24
|
3,19
|
2,65
|
2,39
|
3,64
|
2,42
|
1,58
|
3,88
|
1,59
|
0,88
|
1,20
|
3,55
|
3,63
|
3,78
|
4,03
|
Z-PW
|
|
1,52
|
- 0,27
|
0,01
|
2,21
|
2,52
|
2,37
|
3,24
|
1,87
|
1,32
|
2,92
|
1,73
|
0,71
|
0,87
|
2,15
|
2,91
|
3,10
|
2,17
|
tfpw
|
|
1,62
|
- 0,27
|
0,01
|
3,01
|
2,56
|
2,60
|
3,80
|
2,62
|
1,43
|
3,92
|
1,59
|
0,54
|
0,92
|
3,27
|
3,85
|
3,97
|
4,04
|
tfpw-cu
|
|
|
|
|
2,23
|
2,50
|
2,45
|
3,27
|
1,93
|
1,32
|
2,96
|
|
|
|
2,18
|
2,90
|
3,08
|
2,18
|
mmkh
|
|
1,91
|
- 0,24
|
0,26
|
3,19
|
2,65
|
2,56
|
5,13
|
2,63
|
1,90
|
3,88
|
1,59
|
0,88
|
1,20
|
4,34
|
3,90
|
2,90
|
2,62
|
MMKY
|
|
1,80
|
- 0,26
|
0,23
|
2,92
|
2,82
|
2,31
|
3,34
|
2,13
|
1,48
|
3,76
|
1,70
|
1,12
|
1,11
|
2,90
|
3,35
|
3,36
|
3,22
|
MK-LTP
|
H Estimate
|
0,44
|
0,44
|
0,53
|
0,56
|
0,49
|
0,57
|
0,57
|
0,60
|
0,52
|
0,54
|
0,52
|
0,38
|
0,55
|
0,66
|
0,60
|
0,62
|
0,69
|
|
P-value for H
|
0,95
|
0,93
|
0,27
|
0,16
|
0,54
|
0,14
|
0,15
|
0,04
|
0,34
|
0,23
|
0,37
|
0,55
|
0,22
|
0,01
|
0,06
|
0,04
|
0,00
|
|
MK-LTP
|
1,65
|
- 0,22
|
0,17
|
2,05
|
2,11
|
1,51
|
2,31
|
1,39
|
1,15
|
2,64
|
1,17
|
1,00
|
0,81
|
1,69
|
2,04
|
2,05
|
1,75
|
Sen's Slope
|
0,13
|
-
|
-
|
0,19
|
0,18
|
0,18
|
0,23
|
0,17
|
0,10
|
0,33
|
0,13
|
0,06
|
0,06
|
0,14
|
0,18
|
0,18
|
0,13
|
oran
|
Z-MK
|
|
0,75
|
0,82
|
1,33
|
3,28
|
2,40
|
3,31
|
2,67
|
2,59
|
2,19
|
3,18
|
0,23
|
0,96
|
1,21
|
3,07
|
3,23
|
2,45
|
3,69
|
Z-PW
|
|
0,72
|
0,78
|
0,49
|
1,83
|
1,59
|
2,40
|
2,01
|
2,00
|
1,98
|
3,01
|
0,46
|
0,82
|
1,31
|
1,49
|
2,56
|
1,93
|
1,69
|
tfpw
|
|
0,73
|
0,64
|
0,94
|
3,34
|
2,38
|
3,43
|
2,84
|
2,83
|
2,26
|
3,56
|
0,46
|
0,64
|
1,31
|
3,33
|
3,18
|
2,60
|
3,95
|
tfpw-cu
|
|
|
|
0,51
|
2,03
|
1,58
|
2,50
|
2,02
|
1,95
|
1,98
|
2,95
|
|
|
|
1,54
|
2,65
|
1,93
|
1,86
|
mmkh
|
|
0,75
|
1,13
|
1,33
|
3,89
|
1,27
|
2,24
|
2,85
|
2,59
|
2,52
|
2,35
|
0,23
|
0,96
|
1,12
|
1,64
|
2,18
|
2,23
|
1,98
|
MMKY
|
|
0,70
|
1,00
|
1,06
|
2,77
|
1,84
|
2,73
|
2,24
|
2,22
|
1,98
|
3,81
|
0,22
|
1,11
|
1,16
|
2,12
|
2,63
|
2,09
|
2,63
|
MK-LTP
|
H Estimate
|
0,50
|
0,35
|
0,67
|
0,63
|
0,72
|
0,67
|
0,64
|
0,60
|
0,58
|
0,45
|
0,50
|
0,43
|
0,47
|
0,81
|
0,66
|
0,62
|
0,80
|
|
P-value for H
|
0,51
|
0,33
|
0,01
|
0,03
|
0,00
|
0,01
|
0,02
|
0,07
|
0,11
|
0,87
|
0,47
|
0,95
|
0,69
|
0,00
|
0,01
|
0,03
|
0,00
|
|
MK-LTP
|
0,59
|
1,04
|
0,62
|
1,70
|
0,96
|
1,52
|
1,35
|
1,50
|
1,33
|
2,88
|
0,18
|
0,93
|
1,03
|
0,92
|
1,52
|
1,30
|
1,17
|
Sen's Slope
|
0,06
|
0,08
|
0,08
|
0,21
|
0,18
|
0,25
|
0,19
|
0,14
|
0,13
|
0,27
|
-
|
0,08
|
0,07
|
0,16
|
0,18
|
0,13
|
0,14
|
Constantine
|
Z-MK
|
|
0,99
|
- 0,41
|
0,73
|
2,84
|
2,31
|
2,71
|
3,51
|
2,37
|
- 0,33
|
3,41
|
0,99
|
0,44
|
0,74
|
2,96
|
3,58
|
2,65
|
3,62
|
Z-PW
|
|
0,83
|
- 0,48
|
0,49
|
2,21
|
2,20
|
2,40
|
2,97
|
1,60
|
- 0,36
|
2,54
|
0,99
|
0,44
|
0,56
|
1,94
|
2,80
|
1,74
|
2,06
|
tfpw
|
|
0,73
|
- 0,43
|
0,51
|
2,57
|
2,38
|
2,99
|
3,53
|
2,34
|
- 0,45
|
3,43
|
0,94
|
0,37
|
0,58
|
2,71
|
3,91
|
2,70
|
3,60
|
tfpw-cu
|
|
|
|
|
2,25
|
2,24
|
2,38
|
2,96
|
1,75
|
|
2,56
|
|
|
|
1,89
|
2,86
|
1,79
|
2,01
|
mmkh
|
|
0,99
|
- 0,52
|
0,81
|
3,60
|
2,77
|
2,71
|
3,65
|
2,68
|
- 0,55
|
2,72
|
0,99
|
0,44
|
0,67
|
3,13
|
3,31
|
2,16
|
2,37
|
MMKY
|
|
1,12
|
- 0,46
|
0,67
|
2,68
|
2,49
|
2,45
|
3,65
|
2,03
|
- 0,28
|
3,17
|
1,07
|
0,55
|
0,71
|
2,53
|
3,05
|
2,09
|
2,83
|
MK-LTP
|
H Estimate
|
0,36
|
0,39
|
0,54
|
0,54
|
0,48
|
0,59
|
0,51
|
0,59
|
0,64
|
0,57
|
0,36
|
0,46
|
0,70
|
0,62
|
0,65
|
0,70
|
0,48
|
|
P-value for H
|
0,38
|
0,56
|
0,24
|
0,23
|
0,63
|
0,08
|
0,38
|
0,08
|
0,02
|
0,13
|
0,37
|
0,78
|
0,00
|
0,04
|
0,02
|
0,00
|
0,62
|
|
MK-LTP
|
1,21
|
-0,46
|
0,50
|
1,93
|
1,91
|
1,59
|
2,61
|
1,38
|
-0,17
|
2,13
|
0,55
|
0,87
|
1,54
|
1,61
|
1,75
|
1,13
|
0,61
|
Sen's Slope
|
0,1
|
-0,05
|
0,07
|
0,26
|
0,27
|
0,31
|
0,29
|
0,2
|
-0,03
|
0,37
|
0,09
|
0,04
|
0,05
|
0,2
|
0,27
|
0,15
|
0,16
|
Mascara
|
Z-MK
|
|
1,22
|
- 1,31
|
1,82
|
2,75
|
3,70
|
3,69
|
2,98
|
3,06
|
1,41
|
3,23
|
1,02
|
0,37
|
- 0,01
|
3,86
|
4,07
|
2,80
|
4,42
|
Z-PW
|
|
1,16
|
- 1,23
|
0,63
|
2,42
|
2,83
|
2,15
|
1,86
|
1,55
|
1,02
|
2,69
|
0,80
|
0,75
|
0,12
|
2,58
|
2,10
|
1,84
|
2,01
|
tfpw
|
|
1,14
|
- 1,14
|
1,33
|
2,95
|
3,48
|
3,65
|
2,61
|
2,81
|
1,50
|
3,24
|
0,80
|
0,58
|
0,12
|
3,73
|
3,77
|
2,56
|
4,35
|
tfpw-cu
|
|
|
|
0,60
|
2,37
|
2,71
|
2,08
|
1,84
|
1,38
|
0,82
|
2,69
|
|
|
|
2,69
|
1,98
|
1,94
|
2,10
|
mmkh
|
|
1,23
|
- 1,31
|
1,41
|
4,55
|
3,70
|
3,21
|
4,96
|
3,06
|
1,71
|
2,81
|
1,02
|
0,37
|
- 0,02
|
3,86
|
3,33
|
2,18
|
3,49
|
MMKY
|
|
1,28
|
- 1,50
|
1,38
|
2,71
|
4,07
|
3,09
|
2,83
|
2,49
|
1,13
|
3,90
|
1,01
|
0,59
|
- 0,01
|
3,72
|
3,61
|
2,59
|
3,48
|
MK-LTP
|
H Estimate
|
0,33
|
0,22
|
0,76
|
0,36
|
0,28
|
0,63
|
0,50
|
0,66
|
0,64
|
0,43
|
0,42
|
0,20
|
0,45
|
0,37
|
0,52
|
0,56
|
0,70
|
|
P-value for H
|
0,56
|
0,13
|
0,00
|
0,75
|
0,30
|
0,05
|
0,40
|
0,02
|
0,04
|
0,79
|
0,84
|
0,08
|
0,66
|
0,78
|
0,29
|
0,16
|
0,01
|
|
MK-LTP
|
1,42
|
-2,18
|
0,65
|
2,90
|
5,11
|
1,81
|
2,11
|
1,38
|
0,68
|
2,77
|
0,89
|
0,68
|
-0,01
|
4,01
|
2,68
|
1,65
|
1,81
|
Sen's Slope
|
0,22
|
-0,26
|
0,25
|
0,54
|
0,92
|
0,74
|
0,78
|
0,61
|
0,25
|
0,67
|
0,2
|
0,07
|
-
|
0,55
|
0,67
|
0,38
|
0,42
|
Djelfa
|
Z-MK
|
|
1,41
|
- 0,05
|
2,15
|
2,58
|
2,18
|
1,14
|
4,17
|
4,07
|
1,51
|
3,40
|
0,80
|
0,58
|
0,69
|
2,97
|
3,79
|
3,70
|
4,14
|
Z-PW
|
|
1,12
|
- 0,03
|
1,97
|
2,34
|
1,75
|
0,84
|
3,66
|
2,91
|
1,04
|
2,86
|
0,90
|
0,29
|
0,39
|
1,99
|
2,63
|
2,22
|
2,17
|
tfpw
|
|
1,00
|
- 0,03
|
2,38
|
2,24
|
1,91
|
0,86
|
4,10
|
3,87
|
1,12
|
3,31
|
0,98
|
0,23
|
0,39
|
2,58
|
3,49
|
3,35
|
3,77
|
tfpw-cu
|
|
|
|
|
2,76
|
|
|
3,40
|
3,01
|
|
2,57
|
1,04
|
|
|
2,16
|
2,63
|
2,07
|
2,20
|
mmkh
|
|
1,41
|
- 0,11
|
2,15
|
2,58
|
2,18
|
1,14
|
9,69
|
4,07
|
1,65
|
2,73
|
0,80
|
0,58
|
NaN
|
2,98
|
3,79
|
3,70
|
4,14
|
MMKY
|
|
1,76
|
- 0,05
|
1,87
|
2,73
|
2,38
|
1,10
|
8,16
|
4,29
|
1,55
|
3,99
|
0,75
|
0,72
|
0,69
|
3,17
|
3,93
|
3,48
|
3,77
|
MK-LTP
|
H Estimate
|
0,28
|
0,36
|
0,62
|
0,50
|
0,25
|
0,54
|
0,20
|
0,45
|
0,38
|
0,41
|
0,56
|
0,31
|
0,49
|
0,32
|
0,47
|
0,56
|
0,56
|
|
P-value for H
|
0,25
|
0,67
|
0,05
|
0,41
|
0,16
|
0,22
|
0,06
|
0,69
|
0,80
|
0,97
|
0,16
|
0,34
|
0,47
|
0,42
|
0,60
|
0,17
|
0,16
|
|
MK-LTP
|
1,99
|
- 0,05
|
1,09
|
1,86
|
3,40
|
0,72
|
7,73
|
3,36
|
1,55
|
3,15
|
0,48
|
0,76
|
0,52
|
3,70
|
3,00
|
2,25
|
2,50
|
Sen's Slope
|
0,2
|
-
|
0,37
|
0,53
|
0,58
|
0,2
|
0,54
|
0,53
|
0,21
|
0,68
|
0,12
|
0,08
|
0,08
|
0,44
|
0,43
|
0,37
|
0,29
|
On a seasonal scale, the MK test does not show a significant temperature trend in winter, unlike spring and summer which are marked by a positive trend and register an increase of 0.44, 0.4°C/decade respectively. In autumn, all the tests show a positive trend in temperatures as well as the absence of long-term persistence (Z = 2.25) which shows the intensity of the warming during this season in the region of Djelfa. The Sen slope associated with the MK test indicates an increase of 0.37 °C/decade.
On a monthly scale, all temperature time series are not autocorrelated. The MK test indicates that there is no significant trend in January, February, June, September, November and December. Analysis of temperatures in the months of March, April and May shows a significant positive trend which reflects respectively into an increase of 0.4°C, 0.53 and 0.6°C/ decade. The temperatures in July and August also shows a significant positive trend which reproduces respectively into an increase of 0.54 and 0.53 °C/decade. The month of October is distinguished, as for the other stations, by a significant rise in temperatures of around 0.7°C/ decade.
3.3. Identification of change point
The statistical Pettitt test (1979) is used to detect a change point in mean values of statistical series and thus identify the date of the change. However, when the time series data is autocorrelated, it becomes necessary to apply the modified Pettitt test based on the TFPW-cu approach developed by Sérinaldi and Kilsby (2016). If the autocorrelated time series of temperature at a given time scale presented a change point using the original Pettitt’s test, the Pettitt test using TFPWcu will be subsequently used.
The modified Pettitt test using TFPWcu consists in splitting the initial series into two sub-series based on the change point obtained from original Pettitt’s test and computed the difference of the means (Δ) of the two sub-series, lag-1 autocorrelation coefficient ρ ̂ after elimination of point change, first stage corrected coefficients and finally, the second stage corrected () lag-1 autocorrelation coefficient. Table 3 shows values before and after removing autocorrelation of test statistic KT, year in which change point was appeared and p-value and the parameters of Pettitt test using TFPWcu ( )
At the Algiers meteorological station, it is found that the significance of the Pettitt test at the different time scale agrees perfectly with the results of the Mann-Kendall test. Using the Pettitt test, the annual temperature has change point in the year 1984 (+0.9°C) with an increase of 0.9°C (p-value <0.0001), while for seasonal time scales, spring, summer and autumn data series have reflected a shift respectively in the year 1986 (+ 0.9 °C), 1981 (+1.5 °C) and 1982 (+1.1 °C) and all having p-values less than 0.0001. Winter season has not detected any change point at 5% significance level. After corrected and unbiased trend free prewhitening (TFPWcu), the annual, spring, summer and autumn temperature series were tested again for shift using Pettitt’s test. The results showed that, in principle, all KT values are decreased (table 3), while the p-values are increased relative to original Pettitt’s test but there always remains significative (p-values <0.05). Thus, change point is affirmed in the same years 1984, 1981 and 1982, by modified Pettitt test using TFPWcu, for respectively annual, summer and autumn temperatures series. For the spring temperature data, the date of change point has been brought backward by one year (1985) compared with the original Pettitt’s test.
Analysis of monthly temperatures series using original Pettitt test shows no break in time series of January, February, Mars, November and December. An increase of temperature that exceeds 1°C is observed from April to October early 80’s (except April) and reached 1.7°C in July, August and October. The P-value is less than 0.0001. After using TFPWcu approach, the temperature series of April, June, July and August were tested again for shift using Pettitt’s test. The results showed that all KT values are decreased (table 3), while the p-values are increased comparatively to original Pettitt’s test but there always remains significative (p-values <0.05). The date of change point detected by modified Pettitt test is affirmed in the same years, except on June, where, the date of change point has been brought forward by three years (1984) compared with the original Pettitt’s test.
Analysis of temperature time series of Annaba station using original Pettitt test shown that the annual temperature has change point in the year 1980 with an increase of 0.8°C (p-value <0.0001), while for seasonal time scales, spring, summer and autumn data series have reflected a shift respectively in the year 1980 (+ 0.7 °C), 1981 (+1.1 °C) and 1980 (+1.1 °C) and all having p-values less than 0.0001. Winter season has not detected any change point at 5% significance level. After corrected and unbiased trend free prewhitening (TFPWcu), the annual, spring, summer and autumn temperature series were tested again for shift using Pettitt’s test. The results showed that all KT values are decreased (table 3), while the p-values are slightly increased relative to original Pettitt’s test but there always remains significative (p-values <0.05). For the change point, it is confirmed in the same years as that found by original Pettitt test.
Analysis of monthly temperatures series using original Pettitt test shows no trend in time series of January, February, Mars and December, while a break point is observed in April (+0,9°c), May (+1,1°c), June (+0,9°c), July (+1,3°c), August (+1,1°c), September(+0,8°c), October (+1,7°c) and November (+0,8°c) respectively at the date 1980, 1992, 1992, 1981, 1985, 1980, 1985 and 1982. The P-value is generally less than 0.0001 except for September (0.02). After using TFPWcu approach, the temperature series of August and October were tested again for shift using Pettitt’s test. The results showed that KT values are decreased (table 3) but p-values remains significative (p-values=0.00). The date of change point detected by modified Pettitt test is affirmed in the same years in August, while, the date of change point has been brought backward by one year (1984) compared with the original Pettitt’s test.
Table 3: Change point for Original and Modified Pettitt’s test
stations
|
time séries
|
Original Pettitt test
|
Modified Pettitt test using TFPWcu
|
Difference of temperature (°C)
|
Kt
|
Year
|
P-value
|
Δ (mm)
|
ρ^
|
ρk*
|
ρ^*
|
ρ
|
Kt
|
Year
|
P-value
|
T°C Before
|
T°C after
|
≠
|
Algiers
|
Jan.
|
195
|
no break
|
0,73
|
|
|
|
|
|
|
|
|
|
|
|
Fev.
|
231
|
no break
|
0,54
|
|
|
|
|
|
|
|
|
|
|
|
Mar.
|
315
|
no break
|
0,19
|
|
|
|
|
|
|
|
|
|
|
|
Apr.
|
567
|
1995
|
0,00
|
-1,00
|
0,29
|
0,31
|
0,30
|
-0,07
|
491
|
1995
|
0,01
|
14,7
|
15,8
|
1,1
|
Mai
|
564
|
1987
|
0,00
|
-1,06
|
0,13
|
0,15
|
0,14
|
-0,01
|
513
|
1985
|
0,01
|
17,7
|
18,8
|
1,1
|
Juin
|
677
|
1981
|
< 0,0001
|
-1,27
|
0,28
|
0,29
|
0,29
|
-0,07
|
530
|
1984
|
0,00
|
21,3
|
22,6
|
1,3
|
Jul
|
764
|
1981
|
< 0,0001
|
-1,49
|
0,26
|
0,28
|
0,27
|
-0,01
|
645
|
1981
|
0,00
|
24,1
|
25,7
|
1,7
|
Aug
|
766
|
1985
|
< 0,0001
|
-1,51
|
0,24
|
0,26
|
0,25
|
0,06
|
595
|
1985
|
0,00
|
25,0
|
26,6
|
1,7
|
Sep.
|
482
|
1985
|
0,01
|
-0,90
|
0,19
|
0,20
|
0,20
|
-0,01
|
406
|
1985
|
0,04
|
23,0
|
23,9
|
1,0
|
Oct.
|
662
|
1984
|
< 0,0001
|
-1,57
|
0,10
|
0,12
|
0,11
|
-0,18
|
647
|
1984
|
< 0,0001
|
18,9
|
20,6
|
1,7
|
Nov.
|
304
|
no break
|
0,23
|
|
|
|
|
|
|
|
|
|
|
|
Dec.
|
218
|
no break
|
0,61
|
|
|
|
|
|
|
|
|
|
|
|
DJF
|
232
|
no break
|
0,56
|
|
|
|
|
|
|
|
|
|
|
|
MAM
|
652
|
1986
|
0,00
|
-0,78
|
0,46
|
0,49
|
0,47
|
0,01
|
437
|
1985
|
0,03
|
15,1
|
16,0
|
0,9
|
JJA
|
858
|
1981
|
< 0,0001
|
-1,33
|
0,33
|
0,35
|
0,34
|
0,00
|
661
|
1981
|
0,00
|
23,4
|
24,9
|
1,5
|
SON
|
821
|
1982
|
< 0,0001
|
-1,02
|
0,30
|
0,32
|
0,31
|
-0,19
|
626
|
1982
|
< 0,0001
|
18,9
|
20,0
|
1,1
|
an
|
834
|
1984
|
< 0,0001
|
-0,78
|
0,46
|
0,48
|
0,47
|
-0,15
|
624
|
1984
|
0,00
|
17,3
|
18,2
|
0,9
|
Annaba
|
Jan.
|
300
|
no break
|
0,23
|
|
|
|
|
|
|
|
|
|
|
|
Fev.
|
181
|
no break
|
0,81
|
|
|
|
|
|
|
|
|
|
|
|
Mar.
|
280
|
no break
|
0,30
|
|
|
|
|
|
|
|
|
|
|
|
Apr.
|
608
|
1980
|
0,00
|
-0,9
|
0,21
|
0,23
|
0,23
|
-0,05
|
494
|
1980
|
0,01
|
14,6
|
15,5
|
0,9
|
Mai
|
527
|
1992
|
0,00
|
-1,0
|
0,07
|
0,09
|
0,08
|
0,00
|
503
|
1992
|
0,01
|
17,8
|
18,9
|
1,1
|
Juin
|
506
|
1992
|
0,00
|
-0,9
|
0,10
|
0,12
|
0,11
|
0,04
|
491
|
1987
|
0,01
|
21,3
|
22,2
|
0,9
|
Jul
|
732
|
1981
|
< 0,0001
|
-1,2
|
0,20
|
0,22
|
0,21
|
-0,10
|
619
|
1981
|
0,00
|
23,8
|
25,1
|
1,3
|
Aug
|
662
|
1985
|
< 0,0001
|
-1,1
|
0,22
|
0,24
|
0,24
|
0,13
|
533
|
1985
|
0,00
|
24,9
|
26,0
|
1,1
|
Sep.
|
447
|
1980
|
0,02
|
-0,7
|
0,10
|
0,11
|
0,11
|
0,02
|
394
|
no break
|
0,06
|
23,0
|
23,8
|
0,8
|
Oct.
|
699
|
1985
|
< 0,0001
|
-1,6
|
0,23
|
0,25
|
0,24
|
-0,13
|
564
|
1984
|
0,00
|
19,2
|
20,9
|
1,7
|
Nov.
|
450
|
1982
|
0,02
|
no break
|
|
|
|
|
|
|
15,2
|
16,1
|
0,8
|
Dec.
|
235
|
no break
|
0,52
|
|
|
|
|
|
|
|
|
|
|
|
DJF
|
324
|
no break
|
0,19
|
|
|
|
|
|
|
|
|
|
|
|
MAM
|
690
|
1980
|
< 0,0001
|
-0,7
|
0,36
|
0,38
|
0,37
|
0,04
|
452
|
1980
|
0,02
|
15,1
|
15,8
|
0,7
|
JJA
|
815
|
1981
|
< 0,0001
|
-1,0
|
0,24
|
0,26
|
0,25
|
0,02
|
633
|
1981
|
< 0,0001
|
23,3
|
24,4
|
1,1
|
SON
|
811
|
1980
|
< 0,0001
|
-1,0
|
0,28
|
0,30
|
0,29
|
-0,15
|
620
|
1980
|
0,00
|
19,1
|
20,2
|
1,1
|
an
|
879
|
1980
|
< 0,0001
|
-0,7
|
0,45
|
0,47
|
0,45
|
-0,10
|
558
|
1980
|
0,00
|
17,3
|
18,1
|
0,8
|
Oran
|
Jan.
|
244
|
no break
|
0,48
|
|
|
|
|
|
|
|
|
|
|
|
Fev.
|
180
|
no break
|
0,81
|
|
|
|
|
|
|
|
|
|
|
|
Mar.
|
442
|
1986
|
0,02
|
-0,7
|
0,28
|
0,30
|
0,29
|
0,05
|
284
|
no break
|
0,29
|
|
|
|
Apr.
|
592
|
1994
|
0,00
|
-1,1
|
0,31
|
0,33
|
0,32
|
-0,03
|
449
|
1991
|
0,02
|
15,3
|
16,5
|
1,1
|
Mai
|
554
|
1991
|
0,00
|
-1,1
|
0,35
|
0,37
|
0,36
|
-0,05
|
438
|
1991
|
0,02
|
18,4
|
19,6
|
1,2
|
Juin
|
661
|
1995
|
< 0,0001
|
-1,3
|
0,32
|
0,34
|
0,33
|
0,02
|
526
|
1992
|
0,00
|
21,8
|
23,1
|
1,3
|
Jul
|
588
|
1993
|
0,00
|
-1,1
|
0,29
|
0,30
|
0,30
|
0,03
|
457
|
1997
|
0,01
|
24,8
|
26,1
|
1,2
|
Aug
|
687
|
1985
|
< 0,0001
|
-1,1
|
0,26
|
0,28
|
0,27
|
0,05
|
499
|
1985
|
0,01
|
25,3
|
26,5
|
1,2
|
Sep.
|
422
|
1982
|
0,03
|
-0,6
|
0,11
|
0,13
|
0,13
|
-0,08
|
390
|
no break
|
0,06
|
23,1
|
23,7
|
0,6
|
Oct.
|
553
|
1984
|
0,00
|
-1,2
|
0,03
|
0,05
|
0,05
|
-0,16
|
557
|
1984
|
0,00
|
18,9
|
20,2
|
1,2
|
Nov.
|
234
|
no break
|
0,52
|
|
|
|
|
|
|
|
|
|
|
|
Dec.
|
300
|
no break
|
0,23
|
|
|
|
|
|
|
|
|
|
|
|
DJF
|
326
|
no break
|
0,19
|
|
|
|
|
|
|
|
|
|
|
|
MAM
|
700
|
1993
|
< 0,0001
|
-0,9
|
0,57
|
0,59
|
0,57
|
0,04
|
405
|
1991
|
0,04
|
15,8
|
16,9
|
1,1
|
JJA
|
736
|
1988
|
< 0,0001
|
-1,0
|
0,37
|
0,39
|
0,38
|
0,05
|
514
|
1988
|
0,00
|
24,0
|
25,1
|
1,1
|
SON
|
597
|
1982
|
0,00
|
-0,8
|
0,25
|
0,27
|
0,26
|
-0,12
|
484
|
1982
|
0,01
|
18,9
|
19,8
|
0,9
|
an
|
749
|
1986
|
< 0,0001
|
-0,5
|
0,55
|
0,57
|
0,56
|
-0,09
|
429
|
1993
|
0,03
|
17,6
|
18,5
|
0,8
|
Constantine
|
Jan.
|
240
|
no break
|
0,49
|
|
|
|
|
|
|
|
|
|
|
|
Fev.
|
188
|
no break
|
0,77
|
|
|
|
|
|
|
|
|
|
|
|
Mar.
|
345
|
no break
|
0,13
|
|
|
|
|
|
|
|
|
|
|
|
Apr.
|
499
|
1997
|
0,01
|
-1,44
|
0,13
|
0,15
|
0,14
|
-0,11
|
466
|
1996
|
0,01
|
12,3
|
13,7
|
1,4
|
Mai
|
497
|
1992
|
0,01
|
-1,62
|
0,02
|
0,03
|
0,03
|
-0,02
|
502
|
1992
|
0,01
|
16,5
|
18,2
|
1,7
|
Juin
|
559
|
1992
|
0,00
|
-1,71
|
0,20
|
0,22
|
0,21
|
-0,04
|
484
|
1992
|
0,01
|
21,5
|
23,4
|
1,9
|
Jul
|
709
|
1981
|
< 0,0001
|
-1,53
|
0,13
|
0,15
|
0,15
|
-0,02
|
601
|
1981
|
0,00
|
24,8
|
26,5
|
1,6
|
Aug
|
602
|
1985
|
0,00
|
-1,21
|
0,23
|
0,25
|
0,24
|
0,14
|
449
|
1985
|
0,02
|
25,1
|
26,3
|
1,2
|
Sep.
|
286
|
no break
|
0,27
|
|
|
|
|
|
|
|
|
|
|
|
Oct.
|
671
|
1985
|
< 0,0001
|
-1,88
|
0,23
|
0,25
|
0,24
|
-0,17
|
547
|
1985
|
0,00
|
16,0
|
18,0
|
2,0
|
Nov.
|
337
|
no break
|
0,14
|
|
|
|
|
|
|
|
|
|
|
|
Dec.
|
184
|
no break
|
0,79
|
|
|
|
|
|
|
|
|
|
|
|
DJF
|
224
|
no break
|
0,60
|
|
|
|
|
|
|
|
|
|
|
|
MAM
|
601
|
1993
|
0,00
|
-1,13
|
0,27
|
0,29
|
0,28
|
-0,06
|
435
|
1993
|
0,02
|
12,9
|
14,1
|
1,2
|
JJA
|
801
|
1981
|
< 0,0001
|
-1,38
|
0,34
|
0,36
|
0,35
|
0,03
|
555
|
1981
|
0,00
|
23,7
|
25,3
|
1,5
|
SON
|
681
|
1986
|
< 0,0001
|
-1,02
|
0,34
|
0,36
|
0,35
|
-0,13
|
432
|
1986
|
0,03
|
16,3
|
17,4
|
1,1
|
an
|
757
|
1984
|
< 0,0001
|
-0,83
|
0,43
|
0,45
|
0,43
|
-0,15
|
496
|
1984
|
0,01
|
15,2
|
16,1
|
0,9
|
Mascara
|
Jan.
|
130
|
no break
|
0,26
|
|
|
|
|
|
|
|
|
|
|
|
Fev.
|
111
|
no break
|
0,44
|
|
|
|
|
|
|
|
|
|
|
|
Mar.
|
190
|
1988
|
0,03
|
-0,99
|
0,39
|
0,43
|
0,40
|
0,23
|
114
|
no break
|
0,41
|
11,4
|
12,46
|
1,1
|
Apr.
|
188
|
1996
|
0,03
|
-1,19
|
0,14
|
0,17
|
0,16
|
0,05
|
166
|
no break
|
0,08
|
13,8
|
15
|
1,2
|
Mai
|
224
|
1993
|
0,01
|
-1,91
|
0,20
|
0,23
|
0,22
|
-0,03
|
184
|
1991
|
0,04
|
17,2
|
19,1
|
1,9
|
Juin
|
268
|
1997
|
0,00
|
-1,95
|
0,39
|
0,42
|
0,40
|
-0,16
|
174
|
no break
|
0,06
|
22,1
|
24,03
|
1,9
|
Jul
|
222
|
1997
|
0,01
|
-1,68
|
0,28
|
0,31
|
0,29
|
0,09
|
164
|
no break
|
0,08
|
25,9
|
27,6
|
1,7
|
Aug
|
227
|
1985
|
0,00
|
-2,30
|
0,40
|
0,43
|
0,41
|
0,10
|
124
|
no break
|
0,32
|
25,07
|
27,38
|
2,3
|
Sep.
|
101
|
no break
|
0,56
|
-1,40
|
0,27
|
0,30
|
0,29
|
-0,09
|
82
|
no break
|
0,78
|
|
|
|
Oct.
|
224
|
1998
|
0,01
|
-1,83
|
0,07
|
0,10
|
0,10
|
-0,23
|
208
|
1998
|
0,01
|
17,8
|
19,5
|
1,8
|
Nov.
|
118
|
no break
|
0,37
|
|
|
|
|
|
|
|
|
|
|
|
Dec.
|
64
|
no break
|
0,94
|
|
|
|
|
|
|
|
|
|
|
|
DJF
|
67
|
no break
|
0,95
|
|
|
|
|
|
|
|
|
|
|
|
MAM
|
268
|
1996
|
0,00
|
-1,19
|
0,36
|
0,39
|
0,37
|
0,10
|
180
|
1992
|
0,04
|
14,2
|
15,5
|
1,3
|
JJA
|
292
|
1997
|
0,00
|
-1,61
|
0,42
|
0,45
|
0,43
|
0,02
|
176
|
no break
|
0,06
|
24,76
|
26,37
|
1,6
|
SON
|
193
|
2000
|
0,04
|
-0,86
|
0,22
|
0,25
|
0,24
|
-0,22
|
150
|
no break
|
0,14
|
17,87
|
18,73
|
0,9
|
an
|
260
|
1996
|
0,00
|
-0,88
|
0,55
|
0,59
|
0,56
|
-0,12
|
160
|
no break
|
0,10
|
16,62
|
17,49
|
0,9
|
Djelfa
|
Jan.
|
149
|
no break
|
0,24
|
|
|
|
|
|
|
|
|
|
|
|
Fev.
|
103
|
no break
|
0,66
|
|
|
|
|
|
|
|
|
|
|
|
Mar.
|
195
|
1999
|
0,04
|
|
|
|
|
|
|
|
|
8,4
|
9,6
|
1,2
|
Apr.
|
206
|
1982
|
0,04
|
-1,56
|
0,03
|
0,06
|
0,05
|
-0,22
|
198
|
no break
|
0,06
|
10,92
|
12,5
|
1,6
|
Mai
|
169
|
no break
|
0,13
|
|
|
|
|
|
|
|
|
|
|
|
Juin
|
150
|
no break
|
0,24
|
|
|
|
|
|
|
|
|
|
|
|
Jul
|
279
|
1992
|
0,00
|
-1,36
|
0,05
|
0,07
|
0,07
|
-0,16
|
275
|
1992
|
0,00
|
25,6
|
26,9
|
1,3
|
Aug
|
278
|
1985
|
0,00
|
-1,40
|
0,25
|
0,28
|
0,27
|
-0,12
|
208
|
1985
|
0,05
|
24,5
|
26,0
|
1,4
|
Sep.
|
170
|
no break
|
0,13
|
|
|
|
|
|
|
|
|
|
|
|
Oct.
|
233
|
1998
|
0,01
|
-2,05
|
0,13
|
0,15
|
0,15
|
-0,09
|
236
|
1998
|
0,02
|
14,4
|
16,2
|
1,9
|
Nov.
|
188
|
no break
|
0,07
|
-1,31
|
0,08
|
0,11
|
0,10
|
-0,02
|
189
|
1982
|
0,09
|
|
|
|
Dec.
|
106
|
no break
|
0,63
|
|
|
|
|
|
|
|
|
|
|
|
DJF
|
142
|
no break
|
0,41
|
|
|
|
|
|
|
|
|
|
|
|
MAM
|
255
|
1985
|
0,02
|
-1,23
|
0,14
|
0,17
|
0,16
|
-0,24
|
200
|
no break
|
0,06
|
11,8
|
13,0
|
1,2
|
JJA
|
336
|
1992
|
0,00
|
-1,14
|
0,22
|
0,25
|
0,24
|
-0,10
|
238
|
1992
|
0,01
|
24,1
|
25,3
|
1,2
|
SON
|
282
|
1998
|
0,00
|
-0,90
|
0,29
|
0,32
|
0,31
|
-0,07
|
164
|
no break
|
0,19
|
14,73
|
15,63
|
0,9
|
an
|
294
|
1993
|
0,00
|
-0,77
|
0,40
|
0,43
|
0,41
|
-0,12
|
194
|
no break
|
0,08
|
14,17
|
14,93
|
0,8
|
Analysis of temperature time series of Oran station using original Pettitt test shown that the annual temperature has change point in the year 1986 with an increase of 0.8°C (p-value <0.0001), while for seasonal time scales, spring, summer and autumn data series have reflected a shift respectively in the year 1993 (+ 1.1 °C), 1988 (+1.1 °C) and 1982 (+0.9 °C) and all having p-values less than 0.0001. Winter season has not detected any change point at 5% significance level. After using TFPWcu approach, it is found that all KT values are decreased (table xx), while the p-values are increased relative to original Pettitt’s test but there always remains significative (p-values <0.05). The change point is confirmed in the same years by modified Pettitt test using TFPWcu, for both summer and autumn, while the date of change point has been brought upward by seven years (1993) for annual and backward by two years for spring (1991) compared with the original Pettitt’s test.
Analysis of monthly temperatures series using original Pettitt test shows no trend in January, February, November and December, while a break point is observed in Mars (+1.1°c), April (+1.1°c), May (+1,2°c), June (+1.3°c), July (+1,2°c), August (+1,2°c), September(+1.6°c) and October (+1,2°c) respectively at the date 1986,1994, 1991,1995,1993,1985, 1982 and1984. The P-value is generally less than 0.0001 except for March (p-value= 0.02) and September (p-value=0.03). After using TFPWcu approach, the temperature series of Mars, April, May, June, July and August were tested again for shift using Pettitt’s test. The results showed that KT values are decreased (table xx) but p-values remains significative (p-values=0.00) except for March where TFPWcu approach has successfully eliminate the effect of autocorrelation (P-value=0.29). The date of change point detected by modified Pettitt test is affirmed in the same years only for May and August, while, it has been brought backward by three years for both April (1991) and June (1992) compared with the original Pettitt’s test and been brough upward by for years in July (1997).
At Constantine station, the analysis of temperature time series using original Pettitt test shown that the annual temperature has change point in the year 1984 with an increase of 0.9°C (p-value <0.0001), while for seasonal time scales, spring, summer and autumn data series have reflected a shift respectively in the year 1993 (+ 1.2 °C), 1981 (+1.5 °C) and 1986 (+1.1 °C) and all having p-values less than 0.0001. Winter season has not detected any change point at 5% significance level. After using TFPWcu approach, it is found that all KT values are decreased (table xx), while the p-values are increased relative to original Pettitt’s test but there always remains significative (p-values <0.05). Also, the change point is affirmed in the same years by modified Pettitt test using TFPWcu.
Analysis of monthly temperatures series using original Pettitt test shows no trend in January, February, March, September, November and December, while a change point is observed in April (+1.4°c), May (+1,7°c), June (+1,9°c), July (+1,6°c), August (+1,2°c), and October (+2°c) respectively at the date 1997,1992,1992,1981, 1985 and 1985. After using TFPWcu approach, the temperature series of August and October were tested again for shift using Pettitt’s test. The results showed that KT values are decreased (table xx) but p-values remains significative (p-values=0.00). The date of change point detected by modified Pettitt test is affirmed in the same years for the both months compared with the original Pettitt’s test.
At Mascara station, the Analysis of temperature time series using original Pettitt test shown that the annual temperature has change point in the year 1996 with an increase of 0.9°C (p-value=0.00), while for seasonal time scales, spring, summer and autumn data series have reflected a shift respectively in the year 1996 (+ 1.3 °C), 1997 (+1.6 °C) and 2000 (+0.9 °C) and having respectively a p-value of 0.001, 0.002 and 0.04 (table3). Winter season has not detected any change point at 5% significance level. After corrected and unbiased trend free prewhitening (TFPWcu), the annual, spring and summer temperature series were tested again for shift using Pettitt’s test. The results showed that the p-value is increased beyond the threshold of the significance of 5% for annual (P-value =0.1) and summer temperature (P-value=0.06). For the spring season, the change point date has been brought backward of four years (1992) compared with the original Pettitt’s test.
Analysis of monthly temperatures series using original Pettitt test shows no break in January, February, September, November and December, while a change point is observed in March (+1.1°c), April (+1.2°c), May (+1,9°c), June (+1,9°c), July (+1,7°c), August (+2,3°c), and October (+1.9°c) respectively at the date 1988,1996,1993,1997,1997,1985 and 1998 with the P-value less than 0.03. The P-value calculated after using TFPWcu approach increased beyond the threshold of the significance of 5% for March (0.41), June (0.06) and August (0.32) series.
At Djelfa station, the Analysis of temperature time series using original Pettitt test shown that the annual temperature has change point in the year 1993 with an increase of 0.8°C (p-value=0.00), while for seasonal time scales, spring, summer and autumn data series have reflected a shift respectively in the year 1985 (+ 1.2 °C), 1992 (+1.2 °C) and 1998 (+0.9 °C) and having respectively a P-value of 0.02, 0.0004 and 0.0004 (table 3). Winter season has not detected any change point at 5% significance level. After using TFPWcu approach, the results show that the P-value calculated for annual and autumn auto-correlated temperature series is close to the critical value (0.05) that’s why the detected change point has been eliminated. Analysis of monthly temperatures series using original Pettitt test shows no break in time series of January, February, May, June, September, November and December, while a change point is observed in March (+1.2°c), April (+1.6°c), July (+1,3°c), August (+1,4°c), and October (+1.9°c) respectively at the date 1999,1982,1992,1985 and 1998. It is noted that at the monthly scale, all of the temperature series are not auto-correlated.
3.4. Links between climate indices and temperature
At the annual scale, the Pearson coefficient highlights a strong statistically significant positive correlation between the EA index and all of the annual temperature series (Table 4). The correlation coefficient varies between 0.4 and 0.73 and the stations in the East of the study area (name of the stations) are the ones with the highest correlations.
Statistically significant negative correlations not exceeding 0.36 are also observed between the WMO index and the annual temperatures for only the coastal stations (Algiers, Oran and Annaba). Indeed, Zeroual et al. (2016) highlighted the influence of this mode of circulation on the annual temperatures of northern Algeria during the period 1972-2013. Thus, the present result shows that the WMO index affected annual temperatures in the Mediterranean area long before 1972.
We also note of any significant correlations between the annual temperatures and the NAO, SOI, AO and MO indices, except in Algiers where a statistically significantly positive correlation is observed with AO (R = 0.3). However, this correlation is weak compared to the WMO and EA indices.
For a seasonal time-scale, the analysis of the relationships between temperatures and the six climatic indices highlights highly significant correlations with the EA index for the different seasons of the year during the 1950-2016 study period. In winter, correlation coefficients of 0.46 to 0.57 are observed between the EA index and the temperatures of the six stations in northern Algeria, while there is no strong correlation with the other circulation modes. In the spring, EA also appears to be the dominant mode of circulation influencing the variability of temperatures during this season for all of the stations of the study area. Pearson's correlation coefficients vary between 0.33 and 0.62 (Table 4). In summer, the Pearson coefficient highlights strong correlations between the temperatures of the six stations and the EA index characterized by a correlation coefficient of 0.4 to 0.53. Significant negative correlations stand out between the NAO index and the temperatures of Annaba, Constantine and Djelfa which show a correlation coefficient of -0.27, -0.33, -0.34 respectively (table 4). Significant negative correlations were also observed between the WMO index at the Algiers, Mascara and Djelfa stations, which recorded a correlation coefficient of approximately -0.27, -0.44 and -0.36, respectively. However, the EA index remains the most dominant in summer for all stations. In autumn, significant positive correlations stand out between the EA index and all stations (except Mascara) (0.30 <r <0.41), while significant negative correlations appear between the WMO index and the temperatures of the six stations. of the study area with a correlation coefficient which varies from -0.30 to -0.61 (table 4). However, the Pearson coefficient shows that WMO is the dominant mode of circulation influencing temperatures in the study area in the autumn.
To better understand the variability of temperatures on a monthly scale, we have highlighted for each month the dominant circulation mode for the entire study area.
In general, in January, significant correlations are observed between temperatures and the EA, AO, NAO and MO indices (table 4). However, MO seems to be the most dominant mode of circulation in January for all stations (except Constantine) with a correlation coefficient which varies between -0.48 and -0.58. We also note the strong influence of the EA index at the Annaba and Constantine stations located in the east of the country, which have a correlation coefficient of 0.47 and 0.41 respectively.
In February, very strong positive correlations were observed between the EA index and the temperatures of the entire study area. The correlation coefficient varies between 0.61 and 0.86, while no significant correlation is observed with the other climatic indices.
The EA index also appears to be the dominant mode of circulation influencing the temperatures of the study area in March with a correlation coefficient that varies between 0.36 and 0.46.
In April, temperatures were significantly correlated with the EA, MO and WMO climatic indices. At the coastal stations of Algiers, Annaba and Oran, EA is the dominant mode of circulation with a correlation coefficient which varies between 0.5 and 0.55. In Constantine and Djelfa, the highest correlations are also observed with the EA index, while Mascara is strongly correlated with MO (r = 0.51) and WMO (r = 0.50).
In May, significant positive correlations were observed between the EA index and all stations. The correlation coefficient varies between 0.38 and 0.61. To the east of the study area, we note the presence of significant negative correlations between the WMO index and the temperatures of Annaba and Constantine which show respectively an r of -0.33 and -0.27, however EA remains the mode of circulation the most dominant.
In June, low statistically significant negative correlations were observed between the WMO index and the temperatures in the coastal zone (r = -0.28). In the highlands, the temperatures of Djelfa and Constantine show a low correlation with the EA index which is respectively of the order of 0.28 and 0.29, while the mascara temperatures are strongly correlated with the WMO index (r = -0.52).
In July and August, the highest correlation coefficients are observed with the EA index at the stations of Oran and Algiers, while the NAO and MO indices are the most correlated in Annaba. The stations located in the highlands show correlations with EA and NAO (table 4).
In September, statistically significant correlations were observed between temperatures and the EA and WMO indices at the coastal stations. While, on the highlands the EA index is the most dominant (table 4).
In October, the strongest correlations were observed with the WMO index over the entire study area (I0.35I <r <I0.54I). In November, statistically significant correlations are distinguished between the temperatures of the coastal stations and the indices EA, NAO, WMO and MO, however EA and WMO are the dominant modes of circulation. On the highlands, the EA index is also the most correlated with Constantine, Djelfa and Mascara.
The variability of temperatures in December is influenced by different circulation modes mainly EA, MO, NAO. For the coastal stations, the correlation coefficient varies between 0.56 and 0.65 with the EA index and between -0.47 and -0.52 with the MO index, while the observed coefficients between temperatures and the NAO index vary between 0.4 and 0.44 (table 4). Regarding the highlands, in Constantine, the EA index is the most dominant mode of circulation (r = 0.53) followed by the NAO index (r = -0.45). In mascara and Djelfa, it is rather MO which appears as the dominant mode of circulation (I0.54I <r <I0.57I), followed by NAO (I0.41I <r <I0.47I) then EA (0.36 <r <0.45).
Table 4: Pearson coefficient correlation between climate indices and temperature time series (at 5% significant level)
CI
|
Jan.
|
Fev.
|
Mar.
|
Apr.
|
Mai
|
Juin
|
Jul
|
Aug
|
Sep.
|
Oct.
|
Nov.
|
Dec.
|
DJF
|
MAM
|
JJA
|
SON
|
an
|
Algiers
|
EA
|
0,37
|
0,8
|
0,36
|
0,55
|
0,5
|
0,25
|
0,28
|
0,31
|
0,34
|
0,23
|
0,38
|
0,56
|
0,48
|
0,43
|
0,46
|
0,38
|
0,58
|
AO
|
-0,34
|
-0,04
|
-0,14
|
-0,07
|
-0,03
|
-0,03
|
0,15
|
0,22
|
0,19
|
0,02
|
-0,22
|
-0,25
|
-0,16
|
0,08
|
0,28
|
0,15
|
0,3
|
NAO
|
-0,38
|
0,14
|
-0,12
|
0,04
|
0,01
|
-0,16
|
-0,2
|
-0,23
|
0,03
|
-0,21
|
-0,29
|
-0,4
|
-0,21
|
0,08
|
-0,2
|
-0,21
|
-0,03
|
SOI
|
0,01
|
0,11
|
0
|
0,15
|
-0,08
|
-0,15
|
0,03
|
0,02
|
-0,02
|
-0,07
|
-0,12
|
-0,09
|
-0,02
|
0,02
|
-0,05
|
-0,13
|
-0,09
|
WMOI
|
-0,25
|
0,13
|
-0,02
|
-0,29
|
-0,24
|
-0,28
|
-0,21
|
-0,07
|
-0,28
|
-0,5
|
-0,33
|
-0,31
|
-0,02
|
-0,16
|
-0,27
|
-0,43
|
-0,35
|
MO
|
-0,53
|
-0,17
|
-0,08
|
-0,43
|
-0,1
|
-0,25
|
-0,22
|
-0,2
|
0,02
|
-0,17
|
-0,35
|
-0,52
|
-0,08
|
-0,15
|
0,2
|
-0,2
|
-0,04
|
Oran
|
EA
|
0,32
|
0,81
|
0,42
|
0,51
|
0,38
|
0,29
|
0,32
|
0,3
|
0,32
|
0,22
|
0,36
|
0,65
|
0,54
|
0,44
|
0,43
|
0,35
|
0,54
|
AO
|
-0,45
|
0,01
|
-0,12
|
-0,15
|
0
|
0,01
|
0,11
|
0,2
|
0,13
|
0,11
|
-0,25
|
-0,32
|
-0,26
|
-0,05
|
0,23
|
0,02
|
0,08
|
NAO
|
-0,45
|
0,22
|
0,01
|
0,13
|
0,16
|
-0,04
|
-0,24
|
-0,1
|
0,1
|
-0,04
|
-0,28
|
-0,41
|
-0,26
|
0,18
|
-0,17
|
-0,22
|
-0,13
|
SOI
|
-0,08
|
0,16
|
-0,11
|
-0,04
|
-0,21
|
-0,16
|
0,15
|
0,07
|
0,1
|
0,08
|
-0,02
|
-0,2
|
-0,03
|
-0,16
|
0,03
|
0,03
|
-0,05
|
WMOI
|
-0,22
|
0,09
|
0,07
|
-0,05
|
-0,1
|
-0,28
|
-0,13
|
-0,09
|
-0,31
|
-0,44
|
-0,32
|
-0,24
|
-0,03
|
-0,01
|
-0,22
|
-0,4
|
-0,3
|
MO
|
-0,58
|
-0,01
|
0,19
|
-0,14
|
0,13
|
0,02
|
0,05
|
0,06
|
0,17
|
0,14
|
-0,28
|
-0,47
|
-0,12
|
-0,07
|
0,15
|
-0,21
|
-0,15
|
Annaba
|
EA
|
0,47
|
0,86
|
0,43
|
0,5
|
0,53
|
0,23
|
0,12
|
0,2
|
0,35
|
0,22
|
0,48
|
0,6
|
0,55
|
0,58
|
0,4
|
0,41
|
0,73
|
AO
|
-0,31
|
-0,03
|
-0,16
|
-0,04
|
-0,01
|
-0,13
|
0,02
|
0,12
|
0,12
|
-0,13
|
-0,11
|
-0,34
|
-0,18
|
0,15
|
0,12
|
0,13
|
0,21
|
NAO
|
-0,37
|
0,18
|
-0,12
|
-0,11
|
-0,06
|
-0,18
|
-0,29
|
-0,35
|
-0,07
|
-0,35
|
-0,27
|
-0,44
|
-0,17
|
0,05
|
-0,27
|
-0,25
|
-0,07
|
SOI
|
-0,01
|
0,08
|
-0,02
|
0,07
|
-0,01
|
-0,15
|
-0,18
|
-0,06
|
-0,02
|
-0,21
|
-0,24
|
-0,12
|
-0,09
|
-0,02
|
-0,19
|
-0,24
|
-0,24
|
WMOI
|
-0,17
|
0,16
|
0,08
|
-0,31
|
-0,33
|
-0,28
|
-0,15
|
-0,01
|
-0,58
|
-0,54
|
-0,37
|
-0,48
|
-0,02
|
-0,18
|
-0,22
|
-0,36
|
-0,36
|
MO
|
-0,43
|
-0,12
|
-0,12
|
-0,42
|
-0,25
|
-0,22
|
-0,34
|
-0,26
|
-0,1
|
-0,38
|
-0,24
|
-0,51
|
0
|
0,06
|
0,11
|
-0,25
|
-0,05
|
Constantine
|
EA
|
0,41
|
0,8
|
0,4
|
0,45
|
0,55
|
0,29
|
0,28
|
0,39
|
0,3
|
0,25
|
0,4
|
0,53
|
0,54
|
0,49
|
0,53
|
0,3
|
0,71
|
AO
|
-0,38
|
-0,06
|
-0,15
|
0,02
|
0
|
-0,18
|
-0,18
|
0,02
|
0,13
|
-0,17
|
-0,17
|
-0,37
|
-0,24
|
0,08
|
0,01
|
0,08
|
0,18
|
NAO
|
-0,39
|
0,19
|
-0,08
|
-0,23
|
-0,01
|
-0,25
|
-0,4
|
-0,32
|
-0,03
|
-0,35
|
-0,23
|
-0,45
|
-0,21
|
-0,1
|
-0,33
|
-0,19
|
-0,07
|
SOI
|
-0,04
|
0,09
|
-0,02
|
0,18
|
-0,08
|
-0,18
|
-0,05
|
-0,05
|
-0,01
|
-0,13
|
-0,16
|
-0,12
|
-0,09
|
0,01
|
-0,16
|
-0,13
|
-0,15
|
WMOI
|
-0,22
|
0,12
|
-0,04
|
-0,43
|
-0,27
|
-0,2
|
-0,07
|
0,07
|
-0,1
|
-0,39
|
-0,22
|
-0,28
|
0,01
|
-0,22
|
-0,17
|
-0,3
|
-0,25
|
MO
|
0,04
|
0,04
|
0,14
|
0,07
|
-0,04
|
0,17
|
0,02
|
0,03
|
-0,23
|
-0,29
|
0
|
0,12
|
-0,11
|
-0,02
|
0,09
|
-0,32
|
-0,07
|
Mascara
|
EA
|
0,42
|
0,7
|
0,4
|
0,23
|
0,61
|
0,19
|
0,38
|
0,42
|
0,22
|
0,19
|
0,39
|
0,45
|
0,57
|
0,33
|
0,49
|
0,2
|
0,47
|
AO
|
-0,27
|
-0,11
|
-0,03
|
0,31
|
0,17
|
-0,19
|
-0,07
|
0,02
|
0,08
|
-0,09
|
-0,03
|
-0,43
|
-0,09
|
0,13
|
0,23
|
-0,02
|
0,31
|
NAO
|
-0,39
|
0,19
|
-0,08
|
-0,23
|
-0,01
|
-0,25
|
-0,4
|
-0,32
|
-0,03
|
-0,35
|
-0,23
|
-0,47
|
-0,23
|
0,12
|
-0,07
|
-0,46
|
-0,20
|
SOI
|
0,05
|
0,15
|
0,14
|
0,15
|
-0,26
|
-0,06
|
0,02
|
0,06
|
-0,13
|
0,2
|
0,07
|
-0,04
|
0,14
|
0,12
|
-0,05
|
0,13
|
0,16
|
WMOI
|
-0,26
|
0,15
|
-0,18
|
-0,5
|
-0,26
|
-0,52
|
-0,24
|
-0,25
|
-0,21
|
-0,42
|
-0,14
|
-0,24
|
-0,16
|
-0,3
|
-0,44
|
-0,61
|
-0,18
|
MO
|
-0,53
|
-0,09
|
-0,07
|
-0,51
|
-0,21
|
-0,32
|
-0,32
|
-0,2
|
-0,08
|
-0,41
|
-0,24
|
-0,54
|
-0,36
|
-0,05
|
0,15
|
-0,17
|
0,19
|
Djelfa
|
EA
|
0,28
|
0,61
|
0,46
|
0,59
|
0,59
|
0,28
|
0,45
|
0,52
|
0,54
|
0,24
|
0,49
|
0,36
|
0,47
|
0,62
|
0,47
|
0,32
|
0,40
|
AO
|
-0,23
|
-0,3
|
-0,28
|
0,08
|
-0,02
|
0,01
|
-0,08
|
-0,08
|
0,28
|
-0,15
|
-0,14
|
-0,28
|
-0,33
|
-0,01
|
-0,02
|
0,09
|
0,04
|
NAO
|
-0,25
|
-0,11
|
0,06
|
0,03
|
0,23
|
-0,03
|
-0,32
|
-0,41
|
0,12
|
-0,28
|
-0,01
|
-0,41
|
-0,23
|
0,03
|
-0,34
|
-0,24
|
-0,27
|
SOI
|
0,06
|
0,13
|
-0,19
|
0,22
|
0,07
|
-0,25
|
-0,04
|
-0,12
|
0,07
|
-0,11
|
-0,15
|
-0,2
|
-0,07
|
0,05
|
-0,2
|
-0,08
|
0,05
|
WMOI
|
-0,09
|
0,01
|
0,08
|
-0,46
|
-0,15
|
-0,22
|
-0,03
|
-0,1
|
-0,16
|
-0,45
|
-0,26
|
-0,15
|
0,15
|
-0,08
|
-0,36
|
-0,4
|
-0,27
|
MO
|
-0,48
|
-0,11
|
0,16
|
-0,42
|
0,01
|
-0,06
|
-0,12
|
-0,24
|
0,09
|
-0,23
|
-0,39
|
-0,57
|
-0,24
|
0,03
|
0,07
|
-0,39
|
0,06
|
Following these outcomes, it seems that the EA index affects the variability of temperatures during the different months of the year, however it is during the winter (December and February) and spring (March, April and May months) that it has the greatest influence. According to NOAA (2018), the positive phase EA is associated with above-average surface temperatures in Europe (Mediterranean) during all the months, which explains the rise in temperatures observed in spring and summer North of Algeria.
In December and January, the MO index has a great influence on the temperatures of the study area. Dünkeloh and Jacobeit (2003) considers that MO is strongly linked in winter to the Arctic (AO) and North Atlantic (NAO) oscillations. In fact, the results clearly showed the influence of these three modes of circulation on the temperatures of the study area in December and January. However, MO is the most dominant mode. These results corroborate with the work of Sušelj and Bergant (2006) who found significant correlations with NAO and MO but which are stronger with MO at the scale of the Mediterranean basin. In Lebanon, Ramadan et al (2012) also found significant negative correlations with MO in winter, as did Nastos et al. (2011) in Greece. NAO also influences temperatures during the winter months (December and January) over the entire study area and during the summer months (July and August) on the high plateaus, which coincides with the study of Ramadan et al. (2012) who found negative correlations with NAO in Lebanon in summer, autumn and winter. Negative correlations between temperatures and NAO have also been confirmed for the entire western Mediterranean region by Hurrel (1995) and Trigo et al. (2004). Strong positive phases of NAO tend to be associated with above normal temperatures in the eastern United States and northern Europe and below normal temperatures in Greenland and often in southern Europe and the Middle East (NOAA 2018), which explains the negative correlations between this index and the monthly temperatures in our study area. It is probably for this reason that the temperatures of Northern Algeria do not show a significant trend in winter (table 2 and 3). The results obtained show that AO influences the temperatures of northern Algeria in December and January just like NAO but in a moderate way. According to Marshall et al. (2001) NAO can be considered as the regional expression of AO. Wang et al. (2005) have shown that AO influences the variability of winter temperatures in the European, Asian and African continents, while the NAO is more regional and mainly influences North-West Africa. Also, Rust et al. (2015) found negative correlations with NAO and AO across North Africa, NAO being the most dominant mode in January. This confirms the results set out above.
The AO index experienced a downward trend during the period 1950-1970, then an upward trend between 1970 and 1990 and a downward trend during the period 1990-2010, which indicates its multi -decadal variability (Tanaka and Tamura 2016). The negative phase of AO observed between 1990-2010 -while temperatures on a global scale have continued to increase- shows that this index does not participate in global warming in recent years (Tanaka and Tamura 2016). This negative phase probably influenced the temperatures in our study area, which did not record significant warming in winter (table 2 and 3).
The WMO index appears to be the dominant mode of circulation in the autumn, its negative phase observed since 1990 (http://www.ub.edu/gc/en/2016/06/08/wemo/ ) seems to explain the significant increase in temperatures recorded particularly in October for all the stations in the study area (table 2 and 3). Indeed, Martin et al. (2012) found that high temperatures are associated with negative WMO values while low temperatures are correlated with positive WMO values in the North-West Mediterranean. Rios-Cornejo et al. (2015) also found negative correlations with the WMO in the months of April, May, June, September and October in the North and West regions of Spain, with a correlation coefficient which varies between -0.36 and -0.41.
ENSO has always been considered responsible for global warming. Some studies have highlighted the influence of ENSO on average temperatures (Hafez and Robaa 2008; Latif and Keenlyside 2009). However, the results obtained show no significant correlation between the temperatures of northern Algeria and the SOI index for all the stations, which coincides with the work carried out by Zeroual et al. (2016) in Algeria, Ramadan et al. (2012) in Lebanon and Rust et al. (2015) on the Euro-Mediterranean region.