[1] E. Simon, D. Martin, L. Johan, W. Bengt, B.M. Daniel, S. Magnus, B. Michael. Esophageal cancer: current and emerging therapy modalities. Expert Rev Anticanc. 2008; 8: 1433-1448.
[2] B. Ruffell, N.I. Affara, L.M. Coussens. Differential macrophage programming in the tumor microenvironment. Trends Immuno. 2012;33: 119-126.
[3] J.W. Pollard. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71-78.
[4] A.K. Bonde, V. Tischler, S. Kumar, A. Soltermann, R.A. Schwendener. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer.2012;12:35.
[5] C.Y. Liu, J.Y. Xu, X.Y. Shi, W. Huang, J.L. Ding. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest. 2013;93:844-854.
[6] W.-j. Zhang, X.-h. Wang, S.-t. Gao, C. Chen, X.-y. Xu, Q. sun, Z.-h. Zhou, G.-z. Wu, Q. Yu, G. Xu. Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res. 2018;222 :93-101.
[7] S. Keijiro, M. Hiroshi, T. Koji, T. Tsuyoshi, K. Yukinori, Y. Makoto, N. Kiyokazu, T. Shuji, M. Masaki, D. Yuichiro. High infiltration of tumor-associated macrophages is associated with a poor response to chemotherapy and poor prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. J Surg Oncol. 2015;111:752-759.
[8] R. Ostuni, F. Kratochvill, P.J. Murray, G. Natoli. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunolo.2105; 36: 229-239.
[9] M.R. Galdiero, E. Bonavita, I. Barajon, C. Garlanda, S. Jaillon. Tumor associated macrophages and neutrophils in cancer, J Cell Physiol. 2013;218:1402-1410.
[10] M. Zhang, H. Gregor, S.A. Kahn, T.D. Azad, G. Sharareh, C.Y. Xu, L. Jie, A.S. Achrol, R. Chase, S. Pia. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo. Plos One. 2016;11:e0153550.
[11] T.M. Holling, E. Schooten, P.J.V.D. Elsen. Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol.2004; 65 :1-290.
[12] M. Berlin, A. Fogdell-Hahn, O. Olerup, A. Eklund, J. Grunewald, HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am J Resp Crit Care . 1997;156:1601-1605.
[13] T. Løvig, S.N. Andersen, L. Thorstensen, C.B. Diep, G.I. Meling, R.A. Lothe, T.O. Rognum. Strong HLA-DR expression in microsatellite stable carcinomas of the large bowel is associated with good prognosis. Brit J Cancer. 2002;87:756-762.
[14] K. Sumiyoshi, H. Kuwano, M. Watanabe, M. Kitamura, Y. Toh, K. Sugimachi. HLA-DR antigen expression in squamous epithelial dysplasia and squamous cell carcinoma of the esophagus: an immunohistochemical study. Oncol Rep. 1999;6:301.
[15] J. Li, Y. Xie, X. Wang, C. Jiang, X. Yuan, A. Zhang, C. Liu, L. Pang, F. Li, J. Hu. Overexpression of VEGF-C and MMP-9 predicts poor prognosis in Kazakh patients with esophageal squamous cell carcinoma. PeerJ. 2019;7 : e8182.
[16] T.A. Wynn, A. Chawla, J.W. Pollard. Macrophage biology in development, homeostasis and disease. Nature. 2013;496: 445-455.
[17] A. Mantovani, M. Locati. Orchestration of macrophage polarization. Blood. 2009;114:3135-3136.
[18] C. Jenny, H. Thorsten. Tumour-associated macrophages and cancer, Curr Opin Pharmacol. 2013;13 :595-601.
[19] M.J. Campbell, N.Y. Tonlaar, E.R. Garwood, H. Dezheng, H. Dan, Moore, A.I. Khramtsov, A. Afred, B. Frederick, C. Yinghua, D.O. Malaka. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome, Breast Cancer Res Tr.2011;128 :703-711.
[20] N. Tonlaar, M. Campbell, E. Garwood, A. Khramtsov, D. Moore, A. Au, F. Baehner, D. Huo, M. David, O. Oluwasola. Association of Proliferating Macrophages with High Grade, Hormone Receptor Negative Breast Cancer. Cancer Res. 2009;69: 3042-3042.
[21] Winograd, Rafael, Evans, A. Rebecca, Bayne, J. Lauren, Vonderheide, H. Robert. CD40 immunotherapy for pancreatic cancer. Cancer Immunol Immun. 2013;62 :949-954.
[22] F. Qing-Min, J. Ying-Ying, Y. Guo-Feng, K. Xing-Rui, Y. Fei, G. Lu, L. Rong, Z. Qiu-Dong, Y. Yang, L. Zheng-Hua. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 2014;352 : 160-168.
[23] B.Z. Qian, J.W. Pollard. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell. 2010;141 : 1-51.
[24] T. Zhao, W.H. Xia, M.Q. Zheng, C.Q. Lu, X. Han, Y.J. Sun. Surgical excision promotes tumor growth and metastasis by promoting expression of MMP-9 and VEGF in a breast cancer model. Exp Oncol. 2008;30:60-64.
[25] Z.R. Li, Y.P. Li, M.L. Lin, W.R. Su, W.X. Zhang, Y. Zhang, L. Yao, D. Liang. Activated Macrophages Induce Neovascularization Through Upregulation of MMP-9 and VEGF in Rat Corneas. Cornea. 2012;31 :1028-1035.
[26] F.O. Martinez, A.A. Sica, M. Locati. Macrophage activation and polarization. Front Biosci. 2008;13: 453-461.
[27] C.M. Ohri, S. Aarti, R.H. Green, D.A. Waller, B. Peter. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC. Plos One. 2011;6 : e21874.
[28] M.B. Palmer, A.A. Vichot, L.G. Cantley, G.W. Moeckel. Quantification and localization of M2 macrophages in human kidneys with acute tubular injury. Int J Nephrol. 2014;7 : 415-419.
[29] Yang JB, Zhao ZB, Liu QZ, Hu TD, Long J, Yan K, L. ZX. FoxO1 is a regulator of MHC-II expression and anti-tumor effect of tumor-associated macrophages. Oncogene. 2018;37: 1192-1204.
[30] Z. Wen, H. Liu, R. Gao, M. Zhou, J. Ma, Y. Zhang, J. Zhao, Y. Chen, T. Zhang, F. Huang, N. Pan, J. Zhang, B. Fox, H. Hu, L. Wang. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immuno Cancer. 2018;6:151.
[31] T.P. Miller, S.M. Lippman, C.M. Spier, D.J. Slymen, T.M. Grogan. HLA-DR (Ia) immune phenotype predicts outcome for patients with diffuse large cell lymphoma, J Clin Invest. 1988;82: 370.
[32] L.M. Rimsza, F. Pedro, D.A. Fuchs, M. Hamid, J.M. Connors, R.D. Gascoyne. HLA-DR protein status predicts survival in patients with diffuse large B-cell lymphoma treated on the MACOP-B chemotherapy regimen. Leukemia Lymphoma.2007; 48: 542-546.
[33] Liu J, Li C, Zhang L, Liu K, Jiang X, Wang X, Yang L, Liang W, Liu K, Hu J, L. F. Association of tumour-associated macrophages with cancer cell EMT, invasion, and metastasis of Kazakh oesophageal squamous cell cancer. Diagn pathol.2019; 14: 55.
[34] D.R. Rhodes, S. Kalyana-Sundaram, V. Mahavisno, R. Varambally, J. Yu, B.B. Briggs, T.R. Barrette, M.J. Anstet, C. Kincead-Beal, P. Kulkarni. Oncomine 3.0: Genes, Pathways, and Networks in a Collection of 18,000 Cancer Gene Expression Profiles. Neoplasia. 2007;9 : 166-180.
[35] D. Wankun, W. Yongbo, L. Zexian, C. Han, X. Yu. HemI: a toolkit for illustrating heatmaps. Plos One. 2014;9 : e111988.
[36] D.S. Chandrashekar, B. Bashel, S.A.H. Balasubramanya, C.J. Creighton, I. Ponce-Rodriguez, B. Chakravarthi, S. Varambally. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia.2017; 19: 649-658.