Although Faraday efficiency (FE) for CO production of single-atom catalysts immobilized on nitrogen-doped carbon supports (M-N/C) for CO2 electrocatalytic reduction reaction (CO2RR) is generally over 90%, M-N/C catalysts demonstrate a poor reaction current density, much worse than the current density of industrial level. Herein, we first report a generalized strategy of amino-functionalized carbon supports to regulate electronic structure of M-N/C catalysts (M=Ni, Fe, Zn) to significantly increase current density of CO production. The aminated Ni single-atom catalyst achieves a remarkable CO partial current density of 447.6 mA cm-2 (a total current density over 500 mA cm-2) with a nearly 90% CO FE at a moderate overpotential of 0.89 V, and especially CO FE can be maintained over 85% in a wide operating potential range from -0.5 V to -1.0 V. DFT calculations and experimental researches demonstrate that the superior activity is attributed to enhanced adsorption energies of CO2* and COOH* intermediates caused by the change of electronic structure of aminated catalysts. This work provides an ingenious method for significantly increasing current density at industrial-relevant level of single-atom catalysts for CO2RR.
Figure 1
Figure 2
Figure 3
Figure 4
This preprint is available for download as a PDF.
There is NO Competing Interest.
This is a list of supplementary files associated with this preprint. Click to download.
Supporting Information
Loading...
Posted 06 Aug, 2020
Posted 06 Aug, 2020
Although Faraday efficiency (FE) for CO production of single-atom catalysts immobilized on nitrogen-doped carbon supports (M-N/C) for CO2 electrocatalytic reduction reaction (CO2RR) is generally over 90%, M-N/C catalysts demonstrate a poor reaction current density, much worse than the current density of industrial level. Herein, we first report a generalized strategy of amino-functionalized carbon supports to regulate electronic structure of M-N/C catalysts (M=Ni, Fe, Zn) to significantly increase current density of CO production. The aminated Ni single-atom catalyst achieves a remarkable CO partial current density of 447.6 mA cm-2 (a total current density over 500 mA cm-2) with a nearly 90% CO FE at a moderate overpotential of 0.89 V, and especially CO FE can be maintained over 85% in a wide operating potential range from -0.5 V to -1.0 V. DFT calculations and experimental researches demonstrate that the superior activity is attributed to enhanced adsorption energies of CO2* and COOH* intermediates caused by the change of electronic structure of aminated catalysts. This work provides an ingenious method for significantly increasing current density at industrial-relevant level of single-atom catalysts for CO2RR.
Figure 1
Figure 2
Figure 3
Figure 4
This preprint is available for download as a PDF.
Loading...