Massive spring ozone loss due to anthropogenic emissions of ozone depleting substances is not limited to the austral hemisphere, but can also occur in the Arctic. Previous studies have suggested a link between springtime Arctic ozone depletion and Northern Hemispheric surface climate, which might add surface predictability. However, so far it has not been possible to isolate the role of stratospheric ozone from dynamical downward impacts. For the first time, we quantify the impact of springtime Arctic ozone depletion on surface climate using observations and targeted chemistry-climate model experiments to isolate the effects of ozone feedbacks. We find that springtime stratospheric ozone depletion is followed by surface anomalies in precipitation and temperature resembling a positive Arctic Oscillation. Most notably, we show that these anomalies, affecting large portions of the Northern Hemisphere, cannot be explained by dynamical variability alone, but are to a significant degree driven by stratospheric ozone. The surface signal is linked to reduced shortwave absorption by stratospheric ozone, forcing persistent negative temperature anomalies in the lower stratosphere and a delayed breakup of the polar vortex - analogous to ozone-surface coupling in the Southern Hemisphere.These results suggest that Arctic stratospheric ozone actively forces springtime Northern Hemispheric surface climate and thus provides a source of predictability on seasonal scales.