Anastassopoulou C., Russo L., Tsakris A. and Siettos C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PlosOne. DOI: 10.1371/journal.pone.0230405.
Baker R.E., Yang W., Vecchi G.A., Metcalf C.J.E. and Grenfell B.T. (2020). Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science, DOI: 10.1126/science.abc2535.
Bukhari Q. and Jameel Y. (2020). Will coronavirus pandemic diminish by summer? SSRN, DOI: 10.2139/ssrn.3556998.
Chen S. and Epureanu B. (2017). Regular biennial cycles in epidemics caused by parametric resonance. J Theor Biol. 415 137–44. doi:http://dx.doi.org/10.1016/j.jtbi.2016.12.013. PubMed.
Dushoff J., Plotkin J.B., Levin, S.A., Earn D.J.D. (2004). Dynamical resonance can account for seasonality of influenza epidemics. Proc Natl Acad Sci USA. 101 16915–6. doi: http://dx.doi.org/10.1073/pnas.0407293101. PubMed.
Engelbrecht F.A., Adegoke J., Bopape M-J., Naidoo M., Garland R., Thatcher M., McGregor J., Katzfey J., Werner M., Ichoku C. and Gatebe C. (2015). Projections of rapidly rising surface temperatures over Africa under low mitigation. Env. Res. Letters. 10 085004.
Engelbrecht F.A., Marean C.W., Cowling R., Engelbrecht C., Nkoana R., O’Neal D., Fisher E., Shook E., Franklin J., Neumann F.H., Scott L., Thatcher M., McGregor J.L., Van der Merwe J., Dedekind Z. and Difford M. (2019). Downscaling Last Glacial Maximum climate over southern Africa. Quaternary Science Reviews 226 105879. https://doi.org/10.1016/j.quascirev.2019.105879.
Escobara L.E., Molina-Cruz A. and Barillas-Mury C. (2020). BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). PNAS www.pnas.org/cgi/doi/10.1073/pnas.2008410117.
Ficetola G.F. and Rubolini D. (2020). Climate affects global patterns of COVID-19 early outbreak dynamics. medRxi. DOI: 2020.03.23.20040501.
Gaunt E.R., Hardie A., Claas E.C., Simmonds P. and Templeton K.E. (2010). Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 48 2940–7.
Hale T., Webster S., Petherick A., Phillips T. and Kira B. (2020). Oxford COVID-19 Government Response Tracker, Blavatnik School of Government. https://www.bsg.ox.ac.uk/research/research-projects/oxford-covid-19-government-response-tracker
Harris I.C. and Jones P.D. (2020). CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2018). Centre for Environmental Data Analysis, 22 January 2020. doi:10.5285/10d3e3640f004c578403419aac167d82. http://dx.doi.org/10.5285.
Kudo E., Song E., Yockey L.J., Rakib T., Wong P.W., Homer R.J. and Iwasaki, A. (2019). Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc Natl Acad Sci USA 116 10905-10910. doi:10.1073/pnas.1902840116.
Lai S., Ruktanonchai N.W., Zhou L., Prosper O., Luo W., Floyd J.R., Wesolowski A., Santillana M., Zhang C., Du X., Yu H. and Tatem A.J. (2020). Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. https://doi.org/10.1038/s41586-020-2293-x.
Lofgren E., Fefferman N.H., Naumov Y.N., Gorski J. and Naumov E.N. (2007). Influenza seasonality: underlying causes and modeling theories. Journal of virology 81 5429-5436.
Lowen A.C., Mubareka S., Steel J. and Palese P. (2007). Influenza virus transmission is depen- dent on relative humidity and temperature. PLoS Pathog 3:1470–1476.
Lowen A.C., Steel J., Mubareka S. and Palese P. (2008). High temp (30 °C) blocks aerosol but not contact transmission of influenza virus. J Virol 82:5650–5652.
Maier B.F. and Brockmann D (2020). Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science https://doi.org/10.1126/science.abb4557.
Merow C. and Urban M.C. (2020). Seasonality and uncertainty in COVID-19 growth rates. medRxiv. doi: 10.1101/2020.04.19.20071951.
Meyerowitz-Katz G. and Merone L. (2020). A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. medRxiv. doi: https://doi.org/10.1101/2020.05.03.20089854.
Neher R.A., Dyrdak R., Druelle V., Hodcroft E.B. and Albert Ja. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Med Wkly 50 w20224. doi:10.4414/smw.2020.20224.
Nickbakhsh S., Ho A., Marques D.F.P., McMenamin J., Gunson R.N. and Murcia P.R. (2020). Epidemiology of Seasonal Coronaviruses: Establishing the Context for the Emergence of Coronavirus Disease 2019. The Journal of Infectious Diseases 222 17–25.
O’Reilly K.M., Auzenbergs M., Jafari Y., Liu Y., Flasche S. and Lowe R. (2020). Effective transmission across the globe: the role of climate in COVID-19 mitigation strategies. The Lancet Planetary Health 4 e172. https://doi.org/10.1016/S2542-5196(20)30106-6.
Pei S., Kandula S. and Shaman J. (2020). Differential Effects of Intervention Timing on COVID- 19 Spread in the United States. medRxiv preprint. doi: https://doi.org/10.1101/2020.05.15.20103655
Petrova V.N. and Russell C.A. (2020). The evolution of seasonal influenza viruses. Nat Rev Microbiol. 16 47–60. doi: http://dx.doi.org/10.1038/nrmicro. 2017.118. PubMed.
Pollán M., Pérez-Gómez B., Pastor-Barriuso R., Oteo J., Hernán M.A., Pérez-Olmeda M., Sanmartín J.L., Fernández-García A., Cruz I., de Larrea N.F., Molina M., Rodríguez-Cabrera F., Martín M., Merino-Amador P., Paniagua J.L., Muñoz-Montalvo J.F., Blanco F. and Yotti R. (2020). Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. The Lancet. https://doi.org/10.1016/S0140-6736(20)31483-5.
Qi H., Xiao S., Shi R., Ward M.P., Chen Y., Tu W., Su Q., Wang W., Wang X., Zhang Z. (2020). COVID-19 transmission in Mainland China is associated with temperature and humidity: A time- series analysis. Science of the Total Environment 728. DOI: 10.1016/j.scitotenv.2020.138778.
Sagripanti J.L. and Lytle C.D. (2007). Inactivation of influenza virus by solar radiation. Photochemistry and photobiology 83 1278-1282.
Sajadi M.M., Habibzadeh P., Vintzileous A., Shokouhi S., Miralles-Wilhelm F. and Amoroso A. (2020). Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Network Open. 3 e2011834-.
Sette A. and Crotty S. (2020). Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nature Reviews Immunology. https://doi.org/10.1038/s41577-020-0389-z.
Shaman J., Pitzer V.E., Viboud C., Grenfell B.T. and Lipsitch M. (2010). Absolute humidity and the seasonal onset of influenza in the continental United States. PLOS Biol. 8 e1000316. doi:10.1371/journal.pbio.1000316 Medline.
Shaw Stewart P.D. (2016). Seasonality and selective trends in viral acute respiratory tract Infections. Medical Hypotheses 86 104–119.
Silal S., Pulliam J., Meyer-Rath G., Nichols B., Jamieson L., Kimmie Z. and Moultrie H. (2020). Estimating cases for COVID-19 in South Africa update: 19 May 2020.
Wang J., Tang K., Feng K., and Lv W. (2020). High temperature and high humidity reduce the transmission of COVID-19. arXiv: arXiv:2003.05003v3.
Zhang J., Litvinova M., Liang Y., Wang Y., Wang W., Zha S., Wu Q., Merler S., Viboud C., Vespignani A., Ajelli M. and Yu H. (2020a). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. https://doi.org/10.1126/science.abb8001.
Zhang J., Litvinova M., Wang W., Wang Y., Deng X., Chen X., Li M., Zheng W., Yi L., Chen X., Wu Q., Liang Y., Wang X., Yang J., Sun K., Longini I.M. Jr., Halloran M.E., Wu P., Cowling B.J., Merler S., Viboud C., Vespignani A., Ajelli M. and Yu H. (2020b). Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study. Lancet Infect. Dis. S1473-3099(20)30230-9. doi:10.1016/S1473- 3099(20)30230-9pmid:32247326.