[1] Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006. 99(7): 675-91.
[2] Sahay S. Evaluation and classification of pulmonary arterial hypertension. J Thorac Dis. 2019. 11(Suppl 14): S1789-S1799.
[3] Opitz I, Ulrich S. Pulmonary hypertension in chronic obstructive pulmonary disease and emphysema patients: prevalence, therapeutic options and pulmonary circulatory effects of lung volume reduction surgery. J Thorac Dis. 2018. 10(Suppl 23): S2763-S2774.
[4] Campo A, Mathai SC, Le Pavec J, et al. Outcomes of hospitalisation for right heart failure in pulmonary arterial hypertension. Eur Respir J. 2011. 38(2): 359-67.
[5] Thenappan T, Prins KW, Pritzker MR, Scandurra J, Volmers K, Weir EK. The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension. Ann Am Thorac Soc. 2016. 13(2): 276-84.
[6] Li MX, Jiang DQ, Wang Y, et al. Signal Mechanisms of Vascular Remodeling in the Development of Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol. 2016. 67(2): 182-90.
[7] Steppan CM, Brown EJ, Wright CM, et al. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A. 2001. 98(2): 502-6.
[8] Yang RZ, Huang Q, Xu A, et al. Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem Biophys Res Commun. 2003. 310(3): 927-35.
[9] Teng X, Li D, Champion HC, Johns RA. FIZZ1/RELMalpha, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ Res. 2003. 92(10): 1065-7.
[10] Yamaji-Kegan K, Su Q, Angelini DJ, Champion HC, Johns RA. Hypoxia-induced mitogenic factor has proangiogenic and proinflammatory effects in the lung via VEGF and VEGF receptor-2. Am J Physiol Lung Cell Mol Physiol. 2006. 291(6): L1159-68.
[11] Yamaji-Kegan K, Su Q, Angelini DJ, Myers AC, Cheadle C, Johns RA. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL-4-dependent mechanism. J Immunol. 2010. 185(9): 5539-48.
[12] Renigunta A, Hild C, Rose F, et al. Human RELMbeta is a mitogenic factor in lung cells and induced in hypoxia. FEBS Lett. 2006. 580(3): 900-3.
[13] Liu T, Baek HA, Yu H, et al. FIZZ2/RELM-β induction and role in pulmonary fibrosis. J Immunol. 2011. 187(1): 450-61.
[14] Angelini DJ, Su Q, Yamaji-Kegan K, et al. Resistin-like molecule-beta in scleroderma-associated pulmonary hypertension. Am J Respir Cell Mol Biol. 2009. 41(5): 553-61.
[15] Yamaji-Kegan K, Takimoto E, Zhang A, et al. Hypoxia-induced mitogenic factor (FIZZ1/RELMalpha) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014. 306(12): L1090-103.
[16] Fan C, Su Q, Li Y, et al. Hypoxia-induced mitogenic factor/FIZZ1 induces intracellular calcium release through the PLC-IP(3) pathway. Am J Physiol Lung Cell Mol Physiol. 2009. 297(2): L263-70.
[17] Han L, Song N, Hu X, et al. Inhibition of RELM-beta prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci. 2020. 246: 117419.
[18] Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell. 2017. 170(4): 605-635.
[19] Lee SH, Lee MY, Lee JH, Han HJ. A potential mechanism for short time exposure to hypoxia-induced DNA synthesis in primary cultured chicken hepatocytes: Correlation between Ca(2+)/PKC/MAPKs and PI3K/Akt/mTOR. J Cell Biochem. 2008. 104(5): 1598-611.
[20] Ryu JM, Lee MY, Yun SP, Han HJ. High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-beta1 expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. J Cell Physiol. 2010. 224(1): 59-70.
[21] Zeng X, Zhu L, Xiao R, et al. Hypoxia-Induced Mitogenic Factor Acts as a Nonclassical Ligand of Calcium-Sensing Receptor, Therapeutically Exploitable for Intermittent Hypoxia-Induced Pulmonary Hypertension. Hypertension. 2017. 69(5): 844-854.
[22] Jiang Y, Wang J, Tian H, et al. Increased SUMO-1 expression in response to hypoxia: Interaction with HIF-1α in hypoxic pulmonary hypertension. Int J Mol Med. 2015. 36(1): 271-81.
[23] Angelini DJ, Su Q, Yamaji-Kegan K, et al. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) in chronic hypoxia- and antigen-mediated pulmonary vascular remodeling. Respir Res. 2013. 14: 1.
[24] Angelini DJ, Su Q, Yamaji-Kegan K, et al. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) induces the vascular and hemodynamic changes of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2009. 296(4): L582-93.
[25] Zhang R, Shi L, Zhou L, et al. Transgelin as a therapeutic target to prevent hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014. 306(6): L574-83.
[26] Jiang Y, Zhou Y, Peng G, et al. TRPC channels mediated calcium entry is required for proliferation of human airway smooth muscle cells induced by nicotine-nAChR. Biochimie. 2019. 158: 139-148.
[27] Mishra A, Wang M, Schlotman J, et al. Resistin-like molecule-beta is an allergen-induced cytokine with inflammatory and remodeling activity in the murine lung. Am J Physiol Lung Cell Mol Physiol. 2007. 293(2): L305-13.
[28] Kushiyama A, Shojima N, Ogihara T, et al. Resistin-like molecule beta activates MAPKs, suppresses insulin signaling in hepatocytes, and induces diabetes, hyperlipidemia, and fatty liver in transgenic mice on a high fat diet. J Biol Chem. 2005. 280(51): 42016-25.
[29] Fang C, Meng Q, Wu H, et al. Resistin-like molecule-beta is a human airway remodelling mediator. Eur Respir J. 2012. 39(2): 458-66.
[30] Holcomb IN, Kabakoff RC, Chan B, et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 2000. 19(15): 4046-55.
[31] Grainge C, Dulay V, Ward J, et al. Resistin-like molecule-β is induced following bronchoconstriction of asthmatic airways. Respirology. 2012. 17(7): 1094-100.
[32] Fang CL, Yin LJ, Sharma S, et al. Resistin-like molecule-β (RELM-β) targets airways fibroblasts to effect remodelling in asthma: from mouse to man. Clin Exp Allergy. 2015. 45(5): 940-952.
[33] Tong Q, Zheng L, Lin L, et al. VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-kappaB signaling pathway. Respir Res. 2006. 7: 37.
[34] Jiang Y, Zhou X, Hu R, Dai A. TGF-β1-induced SMAD2/3/4 activation promotes RELM-β transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. Int J Biochem Cell Biol. 2018. 105: 52-60.
[35] Johns RA. Th2 inflammation, hypoxia-induced mitogenic factor/FIZZ1, and pulmonary hypertension and vascular remodeling in schistosomiasis. Am J Respir Crit Care Med. 2010. 181(3): 203-5.
[36] Woo KV, Ornitz DM, Singh GK. Diagnosis and Pathophysiological Mechanisms of Group 3 Hypoxia-Induced Pulmonary Hypertension. Curr Treat Options Cardiovasc Med. 2019. 21(3): 16.
[37] Johns RA, Takimoto E, Meuchel LW, et al. Hypoxia-Inducible Factor 1alpha Is a Critical Downstream Mediator for Hypoxia-Induced Mitogenic Factor (FIZZ1/RELMalpha)-Induced Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2016. 36(1): 134-44.
[38] Kumar S, Wang G, Liu W, et al. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1alpha Mechanisms. Hypertension. 2018. 72(2): 331-342.
[39] Boucherat O, Paulin R, Provencher S, Bonnet S. New Insights Into HIMF (Hypoxia-Induced Mitogenic Factor)-Mediated Signaling Pathways in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol. 2019. 39(12): 2451-2453.
[40] Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX. New mechanisms of pulmonary arterial hypertension: role of Ca²⁺ signaling. Am J Physiol Heart Circ Physiol. 2012. 302(8): H1546-62.
[41] Krimi RB, Kotelevets L, Dubuquoy L, et al. Resistin-like molecule beta regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice. Inflamm Bowel Dis. 2008. 14(7): 931-41.
[42] Wagner KF, Hellberg AK, Balenger S, et al. Hypoxia-induced mitogenic factor has antiapoptotic action and is upregulated in the developing lung: coexpression with hypoxia-inducible factor-2alpha. Am J Respir Cell Mol Biol. 2004. 31(3): 276-82.