1 Zhao, Z.-S., Zhang, Y., Fang, T., Han, Z.-B. & Liang, F.-S. Chitosan-Coated Metal–Organic-Framework Nanoparticles as Catalysts for Tandem Deacetalization–Knoevenagel Condensation Reactions. ACS Applied Nano Materials 3, 6316-6320 (2020).
2 Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T. & Hemmati, S. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate polymers 235, 115966 (2020).
3 Amirnejat, S., Nosrati, A., Javanshir, S. & Naimi-Jamal, M. R. Superparamagnetic alginate-based nanocomposite modified by L-arginine: An eco-friendly bifunctional catalysts and an efficient antibacterial agent. International journal of biological macromolecules 152, 834-845 (2020).
4 Ali, F., Khan, S. B., Shaheen, N. & Zhu, Y. Z. Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. Carbohydrate Polymers, 117681 (2021).
5 Zhou, Y., Shen, J., Bai, Y., Li, T. & Xue, G. Enhanced degradation of Acid Red 73 by using cellulose-based hydrogel coated Fe3O4 nanocomposite as a Fenton-like catalyst. International journal of biological macromolecules 152, 242-249 (2020).
6 Ohata, J., Martin, S. C. & Ball, Z. T. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angewandte Chemie International Edition 58, 6176-6199 (2019).
7 Li, X. et al. Highly active enzyme–metal nanohybrids synthesized in protein–polymer conjugates. Nature Catalysis 2, 718-725 (2019).
8 Patel, S. K. et al. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. Journal of hazardous materials 347, 442-450 (2018).
9 Patel, S. K., Otari, S. V., Kang, Y. C. & Lee, J.-K. Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC advances 7, 3488-3494 (2017).
10 Li, C., Jiang, S., Zhao, X. & Liang, H. Co-immobilization of enzymes and magnetic nanoparticles by metal-nucleotide hydrogelnanofibers for improving stability and recycling. Molecules 22, 179 (2017).
11 Mylkie, K., Nowak, P., Rybczynski, P. & Ziegler-Borowska, M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. Materials 14, 248 (2021).
12 Saneinezhad, S., Mohammadi, L., Zadsirjan, V., Bamoharram, F. F. & Heravi, M. M. Silver nanoparticles-decorated Preyssler functionalized cellulose biocomposite as a novel and efficient catalyst for the synthesis of 2-amino-4 H-pyrans and spirochromenes. Scientific reports 10, 1-26 (2020).
13 Dolatkhah, Z., Javanshir, S., Bazgir, A. & Hemmati, B. Palladium on magnetic Irish moss: A new nano‐biocatalyst for suzuki type cross‐coupling reactions. Applied Organometallic Chemistry 33, e4859 (2019).
14 Liu, Y., Xu, H., Yu, H., Yang, H. & Chen, T. Synthesis of lignin-derived nitrogen-doped carbon as a novel catalyst for 4-NP reduction evaluation. Scientific reports 10, 1-14 (2020).
15 Tan, J. M., Bullo, S., Fakurazi, S. & Hussein, M. Z. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Scientific Reports 10, 1-15 (2020).
16 Çalışkan, M. & Baran, T. Decorated palladium nanoparticles on chitosan/δ-FeOOH microspheres: A highly active and recyclable catalyst for Suzuki coupling reaction and cyanation of aryl halides. International Journal of Biological Macromolecules (2021).
17 Nasrollahzadeh, M., Shafiei, N., Nezafat, Z., Bidgoli, N. S. S. & Soleimani, F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano) catalysts in sustainable and selective oxidation reactions: A review. Carbohydrate Polymers, 116353 (2020).
18 Banazadeh, M., Amirnejat, S. & Javanshir, S. Synthesis, Characterization, and Catalytic Properties of Magnetic [email protected] FU: A Heterogeneous Nanostructured Mesoporous Bio-Based Catalyst for the Synthesis of Imidazole Derivatives. Frontiers in chemistry 8 (2020).
19 Veisi, H., Mohammadi, L., Hemmati, S., Tamoradi, T. & Mohammadi, P. In situ immobilized silver nanoparticles on rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: an efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS omega 4, 13991-14003 (2019).
20 Rajabi-Moghaddam, H., Naimi-Jamal, M. & Tajbakhsh, M. Fabrication of copper (II)-coated magnetic core-shell nanoparticles Fe 3 O [email protected] SiO 2-2-aminobenzohydrazide and investigation of its catalytic application in the synthesis of 1, 2, 3-triazole compounds. Scientific Reports 11, 1-14 (2021).
21 Javanshir, S., Pourshiri, N. S., Dolatkhah, Z. & Farhadnia, M. Caspian Isinglass, a versatile and sustainable biocatalyst for domino synthesis of spirooxindoles and spiroacenaphthylenes in water. Monatshefte für Chemie-Chemical Monthly 148, 703-710 (2017).
22 Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. International journal of biological macromolecules 87, 172-179 (2016).
23 Hemmati, B., Javanshir, S. & Dolatkhah, Z. Hybrid magnetic Irish moss/Fe 3 O 4 as a nano-biocatalyst for synthesis of imidazopyrimidine derivatives. RSC advances 6, 50431-50436 (2016).
24 Dolatkhah, Z., Javanshir, S., Bazgir, A. & Mohammadkhani, A. Magnetic Isinglass a Nano‐Bio Support for Copper Immobilization: Cu–[email protected] Fe3O4 a Heterogeneous Catalyst for Triazoles Synthesis. ChemistrySelect 3, 5486-5493 (2018).
25 Pourian, E., Javanshir, S., Dolatkhah, Z., Molaei, S. & Maleki, A. Ultrasonic-assisted preparation, characterization, and use of novel biocompatible core/shell [email protected] [email protected] isinglass in the synthesis of 1, 4-dihydropyridine and 4 H-pyran derivatives. ACS omega 3, 5012-5020 (2018).
26 Dolatkhah, Z., Javanshir, S. & Bazgir, A. Isinglass–palladium as collagen peptide–metal complex: a highly efficient heterogeneous biocatalyst for Suzuki cross-coupling reaction in water. Journal of the Iranian Chemical Society 16, 1473-1481 (2019).
27 Burate, P. A., Javle, B. R., Desale, P. H. & Kinage, A. K. Amino acid amide based ionic liquid as an efficient organo-catalyst for solvent-free Knoevenagel condensation at room temperature. Catalysis Letters 149, 2368-2375 (2019).
28 Wang, J. et al. Efficient conversion of N-acetyl-d-glucosamine into nitrogen-containing compound 3-acetamido-5-acetylfuran using amino acid ionic liquid as the recyclable catalyst. Science of The Total Environment 710, 136293 (2020).
29 Demurtas, M. et al. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorganic chemistry 85, 568-576 (2019).
30 Nájera, C. & Sansano, J. M. Synthesis of pyrrolizidines and indolizidines by multicomponent 1, 3-dipolar cycloaddition of azomethine ylides. Pure and Applied Chemistry 91, 575-596 (2019).
31 Karimi, A. R. & Sedaghatpour, F. Novel mono-and bis (spiro-2-amino-4H-pyrans): alum-catalyzed reaction of 4-hydroxycoumarin and malononitrile with isatins, quinones, or ninhydrin. Synthesis 2010, 1731-1735 (2010).
32 He, T., Zeng, Q.-Q., Yang, D.-C., He, Y.-H. & Guan, Z. Biocatalytic one-pot three-component synthesis of 3, 3′-disubstituted oxindoles and spirooxindole pyrans using α-amylase from hog pancreas. RSC Advances 5, 37843-37852 (2015).
33 Zamani-Ranjbar-Garmroodi, B., Nasseri, M. A., Allahresani, A. & Hemmat, K. Application of immobilized sulfonic acid on the cobalt ferrite magnetic nanocatalyst (CoFe 2 O [email protected] SiO [email protected] SO 3 H) in the synthesis of spirooxindoles. Research on Chemical Intermediates 45, 5665-5680 (2019).
34 Baharfar, R., Zareyee, D. & Allahgholipour, S. L. Synthesis and characterization of MgO nanoparticles supported on ionic liquid‐based periodic mesoporous organosilica ([email protected] PMO‐IL) as a highly efficient and reusable nanocatalyst for the synthesis of novel spirooxindole‐furan derivatives. Applied Organometallic Chemistry 33, e4805 (2019).
35 Naeimi, H. & Lahouti, S. Sulfonated chitosan encapsulated magnetically Fe 3 O 4 nanoparticles as effective and reusable catalyst for ultrasound-promoted rapid, three-component synthesis of spiro-4H-pyrans. Journal of the Iranian Chemical Society 15, 2017-2031 (2018).
36 Khoobi, M. et al. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst. Journal of Magnetism and Magnetic Materials 375, 217-226 (2015).
37 Jamatia, R., Gupta, A. & Pal, A. K. Nano-FGT: a green and sustainable catalyst for the synthesis of spirooxindoles in aqueous medium. RSC advances 6, 20994-21000 (2016).
38 Elinson, M. N., Ryzhkov, F. V., Zaimovskaya, T. A. & Egorov, M. P. Solvent-free multicomponent assembling of isatins, malononitrile, and dimedone: fast and efficient way to functionalized spirooxindole system. Monatshefte für Chemie-Chemical Monthly 147, 755-760 (2016).
39 Mamaghani, M., Tabatabaeian, K., Pourshiva, M. & Nia, R. H. Rapid and efficient synthesis of spiro-oxindoles using Fe3+-montmorillonite under ultrasonic irradiation. Journal of Chemical Research 39, 314-317 (2015).
40 Keshavarz, M. Ion-pair immobilization of l-prolinate anion onto cationic polymer support and a study of its catalytic activity for one-pot synthesis of spiroindolones. Journal of the Iranian Chemical Society 13, 553-561 (2016).
41 Baharfar, R. & Azimi, R. Immobilization of 1, 4-diazabicyclo [2.2. 2] Octane (DABCO) over mesoporous silica SBA-15: an efficient approach for the synthesis of functionalized spirochromenes. Synthetic Communications 44, 89-100 (2014).
42 Goli-Jolodar, O., Shirini, F. & Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. Journal of Molecular Liquids 224, 1092-1101 (2016).
43 Mohamadpour, F., Maghsoodlou, M. T., Lashkari, M., Heydari, R. & Hazeri, N. Synthesis of Quinolines, Spiro [4 H-pyran-oxindoles] and Xanthenes Under Solvent-Free Conditions. Organic Preparations and Procedures International 51, 456-476 (2019).
44 Nagaraju, S., Paplal, B., Sathish, K., Giri, S. & Kashinath, D. Synthesis of functionalized chromene and spirochromenes using l-proline-melamine as highly efficient and recyclable homogeneous catalyst at room temperature. Tetrahedron letters 58, 4200-4204 (2017).
45 Moradi, L., Ataei, Z. & Zahraei, Z. Convenient synthesis of spirooxindoles using SnO 2 nanoparticles as effective reusable catalyst at room temperature and study of their in vitro antimicrobial activity. Journal of the Iranian Chemical Society 16, 1273-1281 (2019).
46 Wagh, Y. B., Padvi, S. A., Mahulikar, P. P. & Dalal, D. S. CsF promoted rapid synthesis of spirooxindole‐pyran annulated heterocycles at room temperature in ethanol. Journal of Heterocyclic Chemistry 57, 1101-1110 (2020).
47 Chandam, D. R., Mulik, A. G., Patil, D. R. & Deshmukh, M. B. Oxalic acid dihydrate: proline as a new recyclable designer solvent: a sustainable, green avenue for the synthesis of spirooxindole. Research on Chemical Intermediates 42, 1411-1423 (2016).
48 Wang, G. D., Zhang, X. N. & Zhang, Z. H. One‐Pot Three‐Component Synthesis of Spirooxindoles Catalyzed by Hexamethylenetetramine in Water. Journal of Heterocyclic Chemistry 50, 61-65 (2013).
49 Meshram, H. M., Kumar, D. A., Prasad, B. R. V. & Goud, P. R. Efficient and convenient polyethylene glycol (PEG)-mediated synthesis of spiro-oxindoles. Helvetica Chimica Acta 93, 648 (2010).
50 Baghernejad, M., Khodabakhshi, S. & Tajik, S. Isatin-based three-component synthesis of new spirooxindoles using magnetic nano-sized copper ferrite. New Journal of Chemistry 40, 2704-2709 (2016).
51 Kidwai, M., Jahan, A. & Mishra, N. K. Gold (III) chloride (HAuCl4· 3H2O) in PEG: A new and efficient catalytic system for the synthesis of functionalized spirochromenes. Applied Catalysis A: General 425, 35-43 (2012).
52 Padvi, S. A., Tayade, Y. A., Wagh, Y. B. & Dalal, D. S. [bmim] OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature. Chinese Chemical Letters 27, 714-720 (2016).
53 Khot, S. S., Anbhule, P. V., Desai, U. V. & Wadgaonkar, P. P. Tris-hydroxymethylaminomethane (THAM): an efficient organocatalyst in diversity-oriented and environmentally benign synthesis of spirochromenes. Comptes Rendus Chimie 21, 814-821 (2018).
54 Brahmachari, G. & Banerjee, B. Facile and Chemically Sustainable One‐Pot Synthesis of a Wide Array of Fused O‐and N‐Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. Asian Journal of Organic Chemistry 5, 271-286 (2016).
55 Dangolani, S. K., Panahi, F., Nourisefat, M. & Khalafi-Nezhad, A. 4-Dialkylaminopyridine modified magnetic nanoparticles: as an efficient nano-organocatalyst for one-pot synthesis of 2-amino-4 H-chromene-3-carbonitrile derivatives in water. RSC advances 6, 92316-92324 (2016).
56 Mohammadfam, Y., Heris, S. Z. & Khazini, L. Experimental Investigation of Fe3O4/hydraulic oil magnetic nanofluids rheological properties and performance in the presence of magnetic field. Tribology International 142, 105995 (2020).