1. GBD 2016 Causes of Death Collaborators. No Title. Lancet (London, England) [Internet]. Lancet; 2017 [cited 2020 Jul 13];390:1151–210. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28919116
2. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet (London, England) [Internet]. Lancet; 2016 [cited 2020 Jul 15];387:251–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26510778
3. Phipps MS, Cronin CA. Management of acute ischemic stroke. BMJ [Internet]. BMJ; 2020 [cited 2020 Jul 15];368:l6983. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32054610
4. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet (London, England) [Internet]. Lancet; 2014 [cited 2020 Jul 15];384:1929–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25106063
5. Saito M, Chen-Yoshikawa TF, Suetsugu K, Okabe R, Takahagi A, Masuda S, et al. Pirfenidone alleviates lung ischemia-reperfusion injury in a rat model. J Thorac Cardiovasc Surg [Internet]. J Thorac Cardiovasc Surg; 2019 [cited 2020 Jul 13];158:289–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30385019
6. SI S, JC B, MA Y, N S, M F. Reconsidering Neuroprotection in the Reperfusion Era. Stroke [Internet]. Stroke; 2017 [cited 2020 Jul 15];48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29146878
7. Liu J, Chen F, Yin J, Bu F, Zheng B, Yang M, et al. The effects of ginsenosides to amyloid fibril formation by RCMκ-casein. Int J Biol Macromol [Internet]. Int J Biol Macromol; 2015 [cited 2020 Jul 15];79:49–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25934110
8. RJ C, A R, HJ J, MY A, BS M, CH P, et al. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J Ethnopharmacol [Internet]. J Ethnopharmacol; 2016 [cited 2020 Jul 15];190. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27275774
9. MS L, JT H, SH K, S Y, MS K, HJ Y, et al. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol [Internet]. J Ethnopharmacol; 2010 [cited 2020 Jul 18];127. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19961916
10. Yu T, Yang Y, Kwak Y-S, Song GG, Kim M-Y, Rhee MH, et al. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res [Internet]. J Ginseng Res; 2017 [cited 2020 Jul 15];41:127–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28413316
11. Kim DH, Park CH, Park D, Choi YJ, Park MH, Chung KW, et al. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Arch Pharm Res [Internet]. Arch Pharm Res; 2014 [cited 2020 Jul 15];37:813–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23918648
12. Zhang Y, Lin L, Liu GY, Liu JX, Li T. Pharmacokinetics and brain distribution of ginsenosides after administration of sailuotong. Chin J Chin Mater Med 2014, 39(2):316-321. Available from: https://www.cnki.net/
13. Guo Q, Li P, Wang Z, Cheng Y, Wu H, Yang B, et al. Brain distribution pharmacokinetics and integrated pharmacokinetics of Panax Notoginsenoside R1, Ginsenosides Rg1, Rb1, Re and Rd in rats after intranasal administration of Panax Notoginseng Saponins assessed by UPLC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci [Internet]. 2014 [cited 2020 Jul 15];969:264–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1570023214005510
14. Zheng M, Xin Y, Li Y, Xu F, Xi X, Guo H, et al. Ginsenosides: A Potential Neuroprotective Agent. Biomed Res Int [Internet]. Biomed Res Int; 2018 [cited 2020 Jul 13];2018:8174345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29854792
15. Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, et al. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res Bull [Internet]. Brain Res Bull; 2016 [cited 2020 Jul 13];125:30–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27060612
16. Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res [Internet]. J Ginseng Res; 2015 [cited 2020 Jul 13];39:299–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26869821
17. M S, C G, M L, X L, B Y. Therapeutic targets of vitamin C on liver injury and associated biological mechanisms: A study of network pharmacology. Int Immunopharmacol [Internet]. Int Immunopharmacol; 2019 [cited 2020 Jul 15];66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30530052
18. B Z, W Z, Y L, S H, R G, Z S, et al. Network pharmacology-based identification of protective mechanism of Panax Notoginseng Saponins on aspirin induced gastrointestinal injury. Biomed Pharmacother [Internet]. Biomed Pharmacother; 2018 [cited 2020 Jul 15];105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29857294
19. Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res [Internet]. Nucleic Acids Res; 2019 [cited 2020 Jul 15];47:D976–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30365030
20. Su J, Zhou R-R, Guo F-F, Zhou Q-W, Xu H-Y. [Molecular mechanism of Shuguan Granules in treating angina based on integrative pharmacology]. Zhongguo Zhong Yao Za Zhi [Internet]. Zhongguo Zhong Yao Za Zhi; 2019 [cited 2020 Jul 13];44:1425–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31090301
21. Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci [Internet]. Int J Mol Sci; 2019 [cited 2020 Jul 13];20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31487867
22. Duan Y, Cheng S, Jia L, Zhang Z, Chen L. PDRPS7 protects cardiac cells from hypoxia/reoxygenation injury through inactivation of JNKs. FEBS Open Bio [Internet]. FEBS Open Bio; 2020 [cited 2020 Jul 13];10:593–606. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32108998
23. Armahizer M, Blackman A, Plazak M, Brophy GM. Early Acute Ischemic Stroke Management for Pharmacists. Hosp Pharm [Internet]. Hosp Pharm; 2020 [cited 2020 Jul 13];55:12–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31983762
24. Wu ZM, Guo LN, Wang DD. Network pharmacological study on Astragalus Rhizoma-Chuanxiong drug pair in treatment of stroke. Drug Evaluation Research 2019 (9):1749-1756. Available from: https://www.cnki.net/
25. Fatani SH, ALrefai AA, Al-Amodi HS, Kamel HF, Al-Khatieb K, Bader H. Assessment of tumor necrosis factor alpha polymorphism TNF-α-238 (rs 361525) as a risk factor for development of acute kidney injury in critically ill patients. Mol Biol Rep [Internet]. Mol Biol Rep; 2018 [cited 2020 Jul 13];45:839–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29978383
26. R J, G Y, G L. Inflammatory Mechanisms in Ischemic Stroke: Role of Inflammatory Cells. J Leukoc Biol [Internet]. J Leukoc Biol; 2010 [cited 2020 Jul 13];87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20130219
27. A V, S M, MM A, A R-P. Pentoxifylline Attenuates TNF-α Protein Levels and Brain Edema Following Temporary Focal Cerebral Ischemia in Rats. Brain Res [Internet]. Brain Res; 2011 [cited 2020 Jul 13];1377. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21219888
28. Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke. 1997;28(6):1233-1244. doi:10.1161/01.str.28.6.1233. Available from: https://pubmed.ncbi.nlm.nih.gov/9183357/
29. Wang XH, Wang D. Effects of nimotop on NF-κB and caspase-3 expression in rat brain tissue after cerebral ischemic reperfusion. Chin J Biochem Pharm 2015. Available from: https://www.cnki.net/
30. LIU M, LIU XW, LIU XM, LIU SB, WANG Y. The correlation of TNF-α and Caspase-3 in nerve cell apoptosis after spinal cord injury of rats. Clinical J of Medical Officers 2017. Available from: https://www.cnki.net/
31. Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol [Internet]. Mol Neurobiol; 2018 [cited 2020 Jul 13];55:5767–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29052145
32. RJ Y, AM van der B. Mitochondrial Fission, Fusion, and Stress. Science [Internet]. Science; 2012 [cited 2020 Jul 13];337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22936770
33. C H, Y H, L L. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci [Internet]. Int J Mol Sci; 2017 [cited 2020 Jul 13];18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28098754
34. K Z, J C, J W, Q W, C J, YXZ X, et al. Atractylenolide III Ameliorates Cerebral Ischemic Injury and Neuroinflammation Associated With Inhibiting JAK2/STAT3/Drp1-dependent Mitochondrial Fission in Microglia. Phytomedicine [Internet]. Phytomedicine; 2019 [cited 2020 Jul 13];59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30981186
35. YL S, YZ S, GG C, LL W, MZ Z, HF J, et al. TNF-α Induces Drp1-mediated Mitochondrial Fragmentation During Inflammatory Cardiomyocyte Injury. Int J Mol Med [Internet]. Int J Mol Med; 2018 [cited 2020 Jul 13];41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29336470
36. Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med [Internet]. J Cell Mol Med; 2017 [cited 2020 Jul 13];21:2643–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28941171
37. Chasman DI, Schürks M, Anttila V, de Vries B, Schminke U, Launer LJ, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet [Internet]. Nat Genet; 2011 [cited 2020 Jul 13];43:695–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21666692