Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J. (2010),Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, doi:10.1029/2009JF001405.
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., et al. (2019), Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv., 5(6), eaav9396. https://doi.org/10.1126/sciadv.aav9396.
Boehme, L., Lovell, P., Biuw, M., Roquet, F., Nicholson, J., Thorpe, S. E., Meredith, M. P., and Fedak, M. (2009), Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection, Ocean Sci., 5, 685–695, https://doi.org/10.5194/os-5-685-2009.
Bondzio, J. H., Morlighem, M., Seroussi, H., Wood, M., & Mouginot, J. (2018), Control of ocean temperature on Jakobshavn Isbræ's present and future mass loss. Geophys. Res. Lett., 45, 12,912–12,921. https://doi.org/10.1029/2018GL079827
Carroll, D. et al. (2016), The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170.
Cassotto, R., Fahnestock, M., Amundson, J., Truffer, M., & Joughin, I. (2015). Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J. Glaciol., 61(225), 76-88. doi:10.3189/2015JoG13J235
Curry, B., C. M. Lee, B. Petrie, R. E. Moritz, and R. Kwok, 2014: Multiyear Volume, Liquid Freshwater, and Sea Ice Transports through Davis Strait, 2004–10. J. Phys. Oceanogr., 44, 1244–1266, https://doi.org/10.1175/JPO-D-13-0177.1.
Fenty, I., Willis, J. K., Khazendar, A., DiNardo, S., Forsberg, R., Fukumori, I., et al. (2016), Oceans melting Greenland: Early results from NASA's ocean–ice mission in Greenland. Oceanography, 29(4), 72–83, https://doi.org/10.5670/oceanog.2016.100.
Fried, M. J., G.A. Catania, T. C. Bartholomaus, D. Duncan,M. Davis, L. A. Stearns, J. Nash, E. Shroyer, and D. Sutherland (2015), Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier, Geophys. Res. Lett., 42, 9328–9336, doi:10.1002/2015GL065806.
Gardner, A. S., M. A. Fahnestock, and T. A. Scambos, (2019), ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities. Data archived at National Snow and Ice Data Center; [data accessed: 22 July 2020], doi:10.5067/6II6VW8LLWJ7.
Gardner, A. et al. (2018), Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, Cryosphere, 12, 521–547.
Gladish, C. V., Holland, D. M., and Lee, C. M (2015a), Oceanic Boundary Conditions for Jakobshavn Glacier. Part II: Provenance and Sources of Variability of Disko Bay and Ilulissat Icefjord Waters, 1990–2011, J. Phys. Oceanogr., 45, 33–63, https://doi.org/10.1175/JPO-D-14-0045.1.
Gladish, C. V., Holland, D. M., Rosing-Asvid, A., Behrens, J. W., and Boje, J. (2015b), Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability and Renewal of Ilulissat Icefjord Waters, 2001–14, J. Phys. Oceanogr., 45, 3–32, https://doi.org/10.1175/JPO-D-14-0044.1.
Howat, I. M., A. Negrete, B. E. Smith (2014), The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, Cryosph. 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth, B (2008), Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316.
ICES (2014), Dataset on Ocean Hydrography, The International Council for the Exploration of the Sea, Copenhagen, Extractions 31-August 2018, Disko Bay Ocean Temperature Data collected by the Greenland Institute of Natural Resources (GL). ICES, Copenhagen.
Jenkins, A. (2011), Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers, J. Phys. Oceanogr., 41, 2279–2294, https://doi.org/10.1175/JPO-D-11-03.1.
Joughin, I., Shean, D. E., Smith, B. E., and Floricioiu, D, (2020), A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity, The Cryosphere, 14, 211–227. https://doi.org/10.5194/tc-14-211-2020.
Joughin, I., Smith, B., Howat, I., Scambos, T. & Moon, T. (2010), Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56, 415–430, https://doi.org/10.3189/002214310792447734.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori, I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noel, B. P. Y., Van Den Broeke, M. R., DiNardo, S., and Willis, J., (2019), Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools, Nat. Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3.
Kulp, S.A., Strauss, B.H. (2019), New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nat. Commun., 10, 4844 (2019), https://doi.org/10.1038/s41467-019-12808-z.
T. Markus, et al. (2017), The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ., 190, doi:10.1016/j.rse.2016.12.029.
Moller, D., Hensley, S., Mouginot, J., Willis, J., Wu, X., Larsen, C., Rignot, E., Muellerschoen, R., Khazendar (2019), A. Validation of Glacier Topographic Acquisitions from an Airborne Single-Pass Interferometer. Sensors, 19(17), 3700. https://doi.org/10.3390/s19173700.
Morlighem, M., et al. (2017), BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954.
OMG (2020), OMG Mission: Glacier elevation data from the GLISTIN-A campaigns. ver. 1. PO.DAAC, CA, USA. Dataset accessed [2020-Jul-03], https://doi.org/10.5067/OMGEV-GLNA1.
Rignot, E., I. Fenty, Y. Xu, C. Cai, and C. Kemp (2015), Undercutting of marine-terminating glaciers in West Greenland, Geophys. Res. Lett., 42, 5909–5917, doi:10.1002/2015GL064236.
Rysgaard, S., Boone, W., Carlson, D., Sejr, M. K., Bendtsen, J., Juul‐Pedersen, T., et al. (2020), An updated view on water masses on the pan‐west Greenland continental shelf and their link to proglacial fjords. Journal of Geophysical Research: Oceans, 125, e2019JC015564. https://doi.org/10.1029/2019JC015564.
Scheick, J., Enderlin, E., Miller, E., Hamilton, G (2019), First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations. Remote Sens., 11, 935, http://dx.doi.org/10.3390/rs11080935.
Schumann, K., Völker, D., Weinrebe, W.R (2012), Acoustic mapping of the Ilulissat Ice Fjord mouth, West Greenland, Quat. Sci. Rev., 40, 78–88, https://dx.doi.org/10.3390/rs11080935.
Slater, D. A., Felikson, D., Straneo, F., Goelzer, H., Little, C. M., Morlighem, M., Fettweis, X., and Nowicki, S. (2019a), 21st century ocean forcing of the Greenland Ice Sheet for modeling of sea level contribution, The Cryosphere Discuss., 2019, 1-34, doi:10.5194/tc-2019-222.
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., and Holte, J. (2019b), Estimating Greenland tidewater glacier retreat driven by submarine melting, The Cryosphere, 13, 2489-2509, doi:10.5194/tc-13-2489-2019.
Smith, B., H. A. Fricker, N. Holschuh, A. S. Gardner, S. Adusumilli, K. M. Brunt, B. Csatho, K. Harbeck, A. Huth, T. Neumann, J. Nilsson, M. R. Siegfried (2019), Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ., 111352, https://doi.org/10.1016/j.rse.2019.111352.
Smith et al. (2020), Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes, Science, 368(6496), 1239-1242, https://doi.org/10.1126/science.aaz5845.
Tedesco, M., and X. Fettweis (2020), Unprecedented atmospheric conditions (1948-2019) drive the 2019 exceptional melting season over the Greenland ice sheet. The Cryosphere, 14, 1209-1223, doi:10.5194/tc-14-1209-2020.
Velicogna, I., Mohajerani, Y., A, G., Landerer, F., Mouginot, J., Noel, B., et al. (2020). Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophysical Research Letters, 47, e2020GL087291, https://doi.org/10.1029/2020GL087291