Bianchi CL, Gatto S, Pirola C, Naldoni A, Di Michele A, Cerrato G, Crocellà V, Capucci V (2014) Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Appl Catal B: Environ 146:123-130. https://doi.org/10.1016/j.apcatb.2013.02.047.
Chanda A, Rout K, Vasundhara M, Joshi SR, Singh J (2018) Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv 8:10939-10947. https://doi.org/10.1039/C8RA00626A.
Cheng Y, Gao X, Zhang X, Su J, Wang G, Wang L (2018) Synthesis of a TiO2–Cu2O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene. New J Chem 42:9252-9259. https://doi.org/10.1039/C8NJ00409A.
Feng Q, Liu B, Ji J, Li K, Zhang B, Huang H (2021) Enhanced photo-degradation of gaseous toluene over MnOx/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system. Appl Surf Sci 547:148955. https://doi.org/10.1016/j.apsusc.2021.148955.
Guo T, Bai Z, Wu C, Zhu T (2008) Influence of environmental temperature and relative humidity on photocatalytic oxidation of toluene on activated carbon fibers coated TiO2. Front Environ Sci Eng 2:224-229. https://doi.org/10.1007/s11783-008-0039-3.
Karafas ES, Romanias MN, Stefanopoulos V, Binas V, Zachopoulos A, Kiriakidis G, Papagiannakopoulos P (2019) Effect of metal doped and Co-doped TiO2 photocatalysts oriented to degrade indoor/outdoor pollutants for air quality improvement. A kinetic and product study using acetaldehyde as probe molecule. J Photochem Photobiol A: Chem 371:255-263. https://doi.org/10.1016/j.jphotochem.2018.11.023.
Kusiak-Nejman E, Wanag A, Kapica- Kozar J, Kowalczyk Ł, Zgrzebnicki M, Tryba B, Przepiórski J, Morawski AW (2020) Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catal Today 357:630-637. https://doi.org/10.1016/j.cattod.2019.04.078.
Li Q, Li F-T (2020) Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds. Adv Colloid Interface Sci 284:102275. https://doi.org/10.1016/j.cis.2020.102275.
Li X, Yu J, Li G, Liu H, Wang A, Yang L, Zhou W, Chu B, Liu S (2018) TiO2 nanodots anchored on nitrogen-doped carbon nanotubes encapsulated cobalt nanoparticles as photocatalysts with photo-enhanced catalytic activity towards the pollutant removal. J Colloid Interface Sci 526:158-166. https://doi.org/10.1016/j.jcis.2018.04.102.
Low J, Zhang L, Zhu B, Liu Z, Yu J (2018) TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity. ACS Sustain Chem Eng 6:15653-15661. https://doi.org/10.1021/acssuschemeng.8b04150.
Low J, Dai B, Tong T, Jiang C, Yu J (2019) In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CDs composite film photocatalyst. Adv Mater 31:1807920. https://doi.org/10.1002/adma.201807920.
McDonald BC et al. (2018) Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 359:760. https://doi.org/10.1126/science.aaq0524.
Padmanabhan NT, Jayaraj MK, John H (2020) Graphene hybridized high energy faceted titanium dioxide for transparent self-cleaning coatings. Catal Today 348:63-71. https://doi.org/10.1016/j.cattod.2019.09.029.
Padmanabhan NT, Thomas N, Louis J, Mathew DT, Ganguly P, John H, Pillai SC (2021) Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere 271:129506. https://doi.org/10.1016/j.chemosphere.2020.129506.
Paušová Š, Pacileo L, Baudys M, Hrubantová A, Neumann-Spallart M, Dvoranová D, Brezová V, Krýsa J (2020) Active carbon/TiO2 composites for photocatalytic decomposition of benzoic acid in water and toluene in air. Catal Today In Press. https://doi.org/10.1016/j.cattod.2020.06.048.
Qi H, Lee J, Wang L, Zhang M, Zhang J (2016) Photocatalytic performance of titanium dioxide nanoparticles doped with multi-metals. J Adv Oxid Technol 19:302-309. doi: https://doi.org/10.1515/jaots-2016-0214.
Shayegan Z, Lee C-S, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chem Eng J 334:2408-2439. https://doi.org/10.1016/j.cej.2017.09.153.
Shayegan Z, Haghighat F, Lee C-S (2020) Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds. J Environ Chem Eng 8:104162. https://doi.org/10.1016/j.jece.2020.104162.
Shayegan Z, Haghighat F, Lee C-S (2021) Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light. J Clean Prod 287:125462. https://doi.org/10.1016/j.jclepro.2020.125462.
Song Y, Massuyeau F, Jiang L, Dan Y, Le Rendu P, Nguyen TP (2019) Effect of graphene size on the photocatalytic activity of TiO2/poly(3-hexylthiophene)/graphene composite films. Catal Today 321-322:74-80. https://doi.org/10.1016/j.cattod.2018.04.045.
Wang W, Yu J, Xiang Q, Cheng B (2012) Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Appl Catal B: Environ 119-120:109-116. https://doi.org/10.1016/j.apcatb.2012.02.035.
Xie J, Xu M, Wang R, Ye S, Song X (2021) Three-dimensional porous spherical TiO2–Bi2WO6 decorated graphene oxide nanosheets photocatalyst with excellent visible light catalytic degradation of ethylene. Ceram Int 47:14183-14193. https://doi.org/10.1016/j.ceramint.2021.01.286.
Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353-359. https://doi.org/10.1039/C0NJ00623H.