Background: Previous authors have evidenced the relationship between air pollution-aerosols and meteorological variables with the occurrence of pneumonia. Forecasting the number of attentions of pneumonia cases may be useful to optimize the allocation of healthcare resources and support public health authorities to implement emergency plans to face an increase in patients. The purpose of this study is to implement four machine-learning methods to forecast the number of attentions of pneumonia cases in the five largest cities of Colombia by using air pollution-aerosols, and meteorological and admission data.
Methods: The number of attentions of pneumonia cases in the five most populated Colombian cities was provided by public health authorities between January 2009 and December 2019. Air pollution-aerosols and meteorological data were obtained from remote sensors. Four machine-learning methods were implemented for each city. We selected the machine-learning methods with the best performance in each city and implemented two techniques to identify the most relevant variables in the forecasting developed by the best-performing machine-learning models.
Results: According to R2 metric, random forest was the machine-learning method with the best performance for Bogotá, Medellín and Cali; whereas for Barranquilla, the best performance was obtained from the Bayesian adaptive regression trees, and for Cartagena, extreme gradient boosting had the best performance. The most important variables for the forecasting were related to the admission data.
Conclusions: The results obtained from this study suggest that machine learning can be used to efficiently forecast the number of attentions of pneumonia cases, and therefore, it can be a useful decision-making tool for public health authorities.
Figure 1
Figure 2
This is a list of supplementary files associated with this preprint. Click to download.
Loading...
Posted 11 Aug, 2020
Posted 11 Aug, 2020
Background: Previous authors have evidenced the relationship between air pollution-aerosols and meteorological variables with the occurrence of pneumonia. Forecasting the number of attentions of pneumonia cases may be useful to optimize the allocation of healthcare resources and support public health authorities to implement emergency plans to face an increase in patients. The purpose of this study is to implement four machine-learning methods to forecast the number of attentions of pneumonia cases in the five largest cities of Colombia by using air pollution-aerosols, and meteorological and admission data.
Methods: The number of attentions of pneumonia cases in the five most populated Colombian cities was provided by public health authorities between January 2009 and December 2019. Air pollution-aerosols and meteorological data were obtained from remote sensors. Four machine-learning methods were implemented for each city. We selected the machine-learning methods with the best performance in each city and implemented two techniques to identify the most relevant variables in the forecasting developed by the best-performing machine-learning models.
Results: According to R2 metric, random forest was the machine-learning method with the best performance for Bogotá, Medellín and Cali; whereas for Barranquilla, the best performance was obtained from the Bayesian adaptive regression trees, and for Cartagena, extreme gradient boosting had the best performance. The most important variables for the forecasting were related to the admission data.
Conclusions: The results obtained from this study suggest that machine learning can be used to efficiently forecast the number of attentions of pneumonia cases, and therefore, it can be a useful decision-making tool for public health authorities.
Figure 1
Figure 2
Loading...