1 Amos, B. Lessons from the history of light microscopy. Nature cell biology 2, E151-E152 (2000).
2 Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9, 413-468 (1873).
3 Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature methods 7, 603-614 (2010).
4 Haguenau, F. et al. Key events in the history of electron microscopy. Microscopy and Microanalysis 9, 96 (2003).
5 Weissleder, R. & Nahrendorf, M. Advancing biomedical imaging. Proceedings of the National Academy of Sciences 112, 14424-14428 (2015).
6 Schermelleh, L. et al. Super-resolution microscopy demystified. Nature cell biology 21, 72-84 (2019).
7 Ntziachristos, V. & Razansky, D. in Molecular Imaging in Oncology 133-150 (Springer, 2013).
8 Gigan, S. Optical microscopy aims deep. Nature Photonics 11, 14-16 (2017).
9 Zackrisson, S., Van De Ven, S. & Gambhir, S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer research 74, 979-1004 (2014).
10 Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. science 335, 1458-1462 (2012).
11 Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nature methods 13, 627 (2016).
12 Deán-Ben, X., Gottschalk, S., Mc Larney, B., Shoham, S. & Razansky, D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chemical Society Reviews 46, 2158-2198 (2017).
13 Özbek, A., Deán-Ben, X. L. & Razansky, D. Optoacoustic imaging at kilohertz volumetric frame rates. Optica 5, 857-863 (2018).
14 Braitenberg, V. & Schüz, A. Cortex: statistics and geometry of neuronal connectivity. (Springer Science & Business Media, 2013).
15 Yao, J. & Wang, L. V. Photoacoustic microscopy. Laser & photonics reviews 7, 758-778 (2013).
16 Rebling, J. et al. Dual‐wavelength hybrid optoacoustic‐ultrasound biomicroscopy for functional imaging of large‐scale cerebral vascular networks. Journal of biophotonics 11, e201800057 (2018).
17 Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499-502 (2015).
18 Dean-Ben, X. L. & Razansky, D. Localization optoacoustic tomography. Light: Science & Applications 7, 18004-18004 (2018).
19 Vilov, S., Arnal, B. & Bossy, E. Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers. Optics letters 42, 4379-4382 (2017).
20 Kim, J. et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light: Science & Applications 8, 1-11 (2019).
21 Deán-Ben, X. L. & Razansky, D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics 4, 133-140 (2016).
22 Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nature methods 13, 639-650 (2016).
23 Zhang, P., Li, L., Lin, L., Shi, J. & Wang, L. V. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light: Science & Applications 8, 1-9 (2019).
24 Deán-Ben, X. L. e. a. Deep Tissue Volumetric Optoacoustic Tracking of Individual Circulating Tumor Cells in an Intracardially Perfused Mouse Model.
25 O'Connell, K. E. et al. Practical murine hematopathology: a comparative review and implications for research. Comparative medicine 65, 96-113 (2015).
26 Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176 (2007).
27 Kleinfeld, D., Mitra, P. P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences 95, 15741-15746 (1998).
28 Maeda, K., Mies, G., Oláh, L. & Hossmann, K.-A. Quantitative measurement of local cerebral blood flow in the anesthetized mouse using intraperitoneal [14C] iodoantipyrine injection and final arterial heart blood sampling. Journal of Cerebral Blood Flow & Metabolism 20, 10-14 (2000).
29 Schmid, F., Barrett, M. J., Jenny, P. & Weber, B. Vascular density and distribution in neocortex. Neuroimage 197, 792-805 (2019).
30 Lapchak, P. A. et al. Transcranial near-infrared laser transmission (NILT) profiles (800 nm): systematic comparison in four common research species. PloS one 10, e0127580 (2015).
31 Ghanbari, L. et al. Cortex-wide neural interfacing via transparent polymer skulls. Nature communications 10, 1-13 (2019).
32 Lecoq, J. et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nature medicine 17, 893-898 (2011).
33 Kisler, K. et al. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nature protocols 13, 1377 (2018).
34 Unekawa, M. et al. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Brain research 1320, 69-73 (2010).
35 Kamoun, W. S. et al. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nature methods 7, 655 (2010).
36 Wang, T. et al. Multiparametric photoacoustic microscopy of the mouse brain with 300-kHz A-line rate. Neurophotonics 3, 045006 (2016).
37 Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nature biomedical engineering 3, 392-401 (2019).
38 Gateau, J., Chaigne, T., Katz, O., Gigan, S. & Bossy, E. Improving visibility in photoacoustic imaging using dynamic speckle illumination. Optics letters 38, 5188-5191 (2013).
39 Deán-Ben, X. L., Ding, L. & Razansky, D. Dynamic particle enhancement in limited-view optoacoustic tomography. Optics Letters 42, 827-830 (2017).
40 Chaigne, T., Arnal, B., Vilov, S., Bossy, E. & Katz, O. Super-resolution photoacoustic imaging via flow-induced absorption fluctuations. Optica 4, 1397-1404 (2017).
41 Boas, D. A., Pitris, C. & Ramanujam, N. Handbook of biomedical optics. (CRC press, 2016).
42 Cox, B. T., Laufer, J. G., Beard, P. C. & Arridge, S. R. Quantitative spectroscopic photoacoustic imaging: a review. Journal of biomedical optics 17, 061202 (2012).
43 Tzoumas, S. et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nature communications 7, 12121 (2016).
44 Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nature neuroscience 16, 889 (2013).
45 Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nature neuroscience 10, 1369-1376 (2007).
46 Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends in neurosciences 22, 391-397 (1999).
47 Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W. & Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nature neuroscience 21, 1318-1331 (2018).
48 Bennett, R. E. et al. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proceedings of the National Academy of Sciences 115, E1289-E1298 (2018).
49 Klohs, J. et al. Contrast-enhanced magnetic resonance microangiography reveals remodeling of the cerebral microvasculature in transgenic ArcAβ mice. Journal of Neuroscience 32, 1705-1713 (2012).
50 Ayata, C. et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. Journal of Cerebral Blood Flow & Metabolism 24, 744-755 (2004).
51 Nishimura, N., Schaffer, C. B., Friedman, B., Lyden, P. D. & Kleinfeld, D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences 104, 365-370 (2007).
52 Pfeifer, M. et al. Cerebral hemorrhage after passive anti-A [beta] immunotherapy.(Medicine). Science 298, 1379-1380 (2002).
53 Ozbek, A., Deán-Ben, X. & Razansky, D. in European conference on biomedical optics. 88000I (Optical Society of America).
54 Demené, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity. IEEE transactions on medical imaging 34, 2271-2285 (2015).
55 Dorr, A., Sled, J. G. & Kabani, N. Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35, 1409-1423 (2007).