[1] Yanagi S, Sato T, Kangawa K, Nakazato M. The Homeostatic Force of Ghrelin. Cell Metabolism 2018;27:786–804. https://doi.org/10.1016/j.cmet.2018.02.008.
[2] Fernandez G, Cabral A, Andreoli MF, Labarthe A, M’Kadmi C, Ramos JG, et al. Evidence Supporting a Role for Constitutive Ghrelin Receptor Signaling in Fasting-Induced Hyperphagia in Male Mice. Endocrinology 2018;159:1021–34. https://doi.org/10.1210/en.2017-03101.
[3] Zhao T-J, Liang G, Li RL, Xie X, Sleeman MW, Murphy AJ, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proceedings of the National Academy of Sciences 2010;107:7467–72. https://doi.org/10.1073/pnas.1002271107.
[4] Cabral A, Valdivia S, Fernandez G, Reynaldo M, Perello M. Divergent Neuronal Circuitries Underlying Acute Orexigenic Effects of Peripheral or Central Ghrelin: Critical Role of Brain Accessibility. J Neuroendocrinol 2014;26:542–54. https://doi.org/10.1111/jne.12168.
[5] Kuo Y-T, Parkinson JRC, Chaudhri OB, Herlihy AH, So P-W, Dhillo WS, et al. The Temporal Sequence of Gut Peptide–CNS Interactions Tracked In Vivo by Magnetic Resonance Imaging. J Neurosci 2007;27:12341–8. https://doi.org/10.1523/JNEUROSCI.2391-07.2007.
[6] McFarlane MR, Brown MS, Goldstein JL, Zhao T-J. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metabolism 2014;20:54–60. https://doi.org/10.1016/j.cmet.2014.04.007.
[7] Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin Enhances Appetite and Increases Food Intake in Humans. J Clin Endocrinol Metab 2001;86:5992–5992. https://doi.org/10.1210/jcem.86.12.8111.
[8] Andermann ML, Lowell BB. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017;95:757–78. https://doi.org/10.1016/j.neuron.2017.06.014.
[9] Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 2011;14:351–5. https://doi.org/10.1038/nn.2739.
[10] Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 2011;121:1424–8. https://doi.org/10.1172/JCI46229.
[11] Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005;8:1289–91. https://doi.org/10.1038/nn1548.
[12] Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005;310:683–5. https://doi.org/10.1126/science.1115524.
[13] Willesen MG, Kristensen P, Rømer J. Co-Localization of Growth Hormone Secretagogue Receptor and NPY mRNA in the Arcuate Nucleus of the Rat. NEN 1999;70:306–16. https://doi.org/10.1159/000054491.
[14] Wang Q, Liu C, Uchida A, Chuang J-C, Walker A, Liu T, et al. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Molecular Metabolism 2014;3:64–72. https://doi.org/10.1016/j.molmet.2013.10.001.
[15] Wu C-S, Bongmba O, Yue J, Lee J, Lin L, Saito K, et al. Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis. IJMS 2017;18:832. https://doi.org/10.3390/ijms18040832.
[16] Frankenfield DC. On heat, respiration, and calorimetry. Nutrition 2010;26:939–50. https://doi.org/10.1016/j.nut.2010.01.002.
[17] Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407:908–13. https://doi.org/10.1038/35038090.
[18] Denis RGP, Joly-Amado A, Webber E, Langlet F, Schaeffer M, Padilla SL, et al. Palatability Can Drive Feeding Independent of AgRP Neurons. Cell Metab 2015;22:646–57. https://doi.org/10.1016/j.cmet.2015.07.011.
[19] Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addiction Biology 2008;13:358–63. https://doi.org/10.1111/j.1369-1600.2008.00125.x.
[20] Jerlhag E, Egecioglu E, Dickson SL, Engel JA. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system: Mechanisms for ghrelin-induced reinforcement. Addiction Biology 2011;16:82–91. https://doi.org/10.1111/j.1369-1600.2010.00231.x.
[21] Cornejo MP, Barrile F, De Francesco PN, Portiansky EL, Reynaldo M, Perello M. Ghrelin Recruits Specific Subsets of Dopamine and GABA Neurons of Different Ventral Tegmental Area Sub-nuclei. Neuroscience 2018;392:107–20. https://doi.org/10.1016/j.neuroscience.2018.09.027.
[22] Naznin F, Toshinai K, Waise TMZ, Okada T, Sakoda H, Nakazato M. Restoration of metabolic inflammation-related ghrelin resistance by weight loss. Journal of Molecular Endocrinology 2018;60:109–18. https://doi.org/10.1530/JME-17-0192.
[23] Theander-Carrillo C. Ghrelin action in the brain controls adipocyte metabolism. Journal of Clinical Investigation 2006;116:1983–93. https://doi.org/10.1172/JCI25811.
[24] van den Pol AN, Yao Y, Fu L-Y, Foo K, Huang H, Coppari R, et al. Neuromedin B and Gastrin-Releasing Peptide Excite Arcuate Nucleus Neuropeptide Y Neurons in a Novel Transgenic Mouse Expressing Strong Renilla Green Fluorescent Protein in NPY Neurons. J Neurosci 2009;29:4622–39. https://doi.org/10.1523/JNEUROSCI.3249-08.2009.
[25] Luquet S, Phillips CT, Palmiter RD. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 2007;28:214–25. https://doi.org/10.1016/j.peptides.2006.08.036.
[26] National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011.
[27] Bilreiro C, Fernandes FF, Andrade L, Chavarrías C, Simões RV, Matos C, et al. Hyoscine butylbromide for bowel motion reduction in mouse abdominal MRI. ArXiv:200704282 [Physics] 2020.
[28] Lockie SH, Stark R, Mequinion M, Ch’ng S, Kong D, Spanswick DC, et al. Glucose Availability Predicts the Feeding Response to Ghrelin in Male Mice, an Effect Dependent on AMPK in AgRP Neurons. Endocrinology 2018;159:3605–14. https://doi.org/10.1210/en.2018-00536.
[29] Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007;5:181–94. https://doi.org/10.1016/j.cmet.2007.02.004.
[30] Kopin AS, Mathes WF, McBride EW, Nguyen M, Al-Haider W, Schmitz F, et al. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 1999;103:383–91. https://doi.org/10.1172/JCI4901.
[31] Navarro M, Lerma-Cabrera JM, Carvajal F, Lowery EG, Cubero I, Thiele TE. Assessment of voluntary ethanol consumption and the effects of a melanocortin (MC) receptor agonist on ethanol intake in mutant C57BL/6J mice lacking the MC-4 receptor. Alcohol Clin Exp Res 2011;35:1058–66. https://doi.org/10.1111/j.1530-0277.2011.01438.x.
[32] Cornejo MP, Castrogiovanni D, Schiöth HB, Reynaldo M, Marie J, Fehrentz J, et al. Growth hormone secretagogue receptor signalling affects high‐fat intake independently of plasma levels of ghrelin and LEAP 2, in a 4‐day binge eating model. J Neuroendocrinol 2019;31. https://doi.org/10.1111/jne.12785.
[33] Even PC, Nadkarni NA. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2012;303:R459–76. https://doi.org/10.1152/ajpregu.00137.2012.
[34] Weir JBDB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949;109:1–9. https://doi.org/10.1113/jphysiol.1949.sp004363.
[35] Cabral A, Suescun O, Zigman JM, Perello M. Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS ONE 2012;7:e31462. https://doi.org/10.1371/journal.pone.0031462.
[36] Cabral A, Cornejo MP, Fernandez G, De Francesco PN, Garcia-Romero G, Uriarte M, et al. Circulating Ghrelin Acts on GABA Neurons of the Area Postrema and Mediates Gastric Emptying in Male Mice. Endocrinology 2017;158:1436–49. https://doi.org/10.1210/en.2016-1815.
[37] Shoji E, Okumura T, Onodera S, Takahashi N, Harada K, Kohgo Y. Gastric emptying in OLETF rats not expressing CCK-A receptor gene. Dig Dis Sci 1997;42:915–9. https://doi.org/10.1023/a:1018860313674.
[38] Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates 2001.
[39] Murai A, Iwamura K, Takada M, Ogawa K, Usui T, Okumura J. Control of postprandial hyperglycaemia by galactosyl maltobionolactone and its novel anti-amylase effect in mice. Life Sci 2002;71:1405–15. https://doi.org/10.1016/s0024-3205(02)01844-1.
[40] Page LC, Gastaldelli A, Gray SM, D’Alessio DA, Tong J. Interaction of GLP-1 and Ghrelin on Glucose Tolerance in Healthy Humans. Diabetes 2018;67:1976–85. https://doi.org/10.2337/db18-0451.
[41] Caixás A, Bashore C, Nash W, Pi-Sunyer F, Laferrère B. Insulin, unlike food intake, does not suppress ghrelin in human subjects. J Clin Endocrinol Metab 2002;87:1902. https://doi.org/10.1210/jcem.87.4.8538.
[42] Wells AS, Read NW, Uvnas-Moberg K, Alster P. Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol Behav 1997;61:679–86. https://doi.org/10.1016/s0031-9384(96)00519-7.
[43] Kobelt P, Tebbe JJ, Tjandra I, Stengel A, Bae H-G, Andresen V, et al. CCK inhibits the orexigenic effect of peripheral ghrelin. Am J Physiol Regul Integr Comp Physiol 2005;288:R751-758. https://doi.org/10.1152/ajpregu.00094.2004.
[44] Phillips RJ, Powley TL. Gastric volume rather than nutrient content inhibits food intake. Am J Physiol 1996;271:R766-769. https://doi.org/10.1152/ajpregu.1996.271.3.R766.
[45] Powley TL, Phillips RJ. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 2004;82:69–74. https://doi.org/10.1016/j.physbeh.2004.04.037.
[46] Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001;120:337–45. https://doi.org/10.1053/gast.2001.22158.
[47] Stacher G, Bergmann H, Havlik E, Schmierer G, Schneider C. Effects of oral cyclotropium bromide, hyoscine N-butylbromide and placebo on gastric emptying and antral motor activity in healthy man. Gut 1984;25:485–90. https://doi.org/10.1136/gut.25.5.485.
[48] Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature 2001;409:194–8. https://doi.org/10.1038/35051587.
[49] Kim ER, Tong Q. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry. In: Wu J, editor. Thermogenic Fat: Methods and Protocols, New York, NY: Springer; 2017, p. 135–43. https://doi.org/10.1007/978-1-4939-6820-6_13.
[50] Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN, et al. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor–dependent manner. Molecular Metabolism 2020;32:69–84. https://doi.org/10.1016/j.molmet.2019.11.014.
[51] Chuang J-C, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, et al. Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest 2011;121:2684–92. https://doi.org/10.1172/JCI57660.
[52] Westerterp KR. Control of energy expenditure in humans. Eur J Clin Nutr 2017;71:340–4. https://doi.org/10.1038/ejcn.2016.237.
[53] Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept 2005;130:97–103. https://doi.org/10.1016/j.regpep.2005.04.004.
[54] Yasuda T, Masaki T, Kakuma T, Yoshimatsu H. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neuroscience Letters 2003;349:75–8. https://doi.org/10.1016/S0304-3940(03)00789-4.
[55] Abtahi S, Mirza A, Howell E, Currie PJ. Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner. Gen Comp Endocrinol 2017;250:9–14. https://doi.org/10.1016/j.ygcen.2017.05.017.
[56] Kohno D, Gao H-Z, Muroya S, Kikuyama S, Yada T. Ghrelin Directly Interacts With Neuropeptide-Y– Containing Neurons in the Rat Arcuate Nucleus 2003;52:9.
[57] Yang Y, Atasoy D, Su HH, Sternson SM. Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop. Cell 2011;146:992–1003. https://doi.org/10.1016/j.cell.2011.07.039.
[58] Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, et al. Orexigenic Action of Peripheral Ghrelin Is Mediated by Neuropeptide Y and Agouti-Related Protein. Endocrinology 2004;145:2607–12. https://doi.org/10.1210/en.2003-1596.
[59] Chen Y, Lin Y-C, Zimmerman CA, Essner RA, Knight ZA. Hunger neurons drive feeding through a sustained, positive reinforcement signal. ELife 2016;5:e18640. https://doi.org/10.7554/eLife.18640.
[60] Nakajima K, Cui Z, Li C, Meister J, Cui Y, Fu O, et al. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat Commun 2016;7. https://doi.org/10.1038/ncomms10268.
[61] Semjonous NM, Smith KL, Parkinson JRC, Gunner DJL, Liu Y-L, Murphy KG, et al. Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int J Obes (Lond) 2009;33:775–85. https://doi.org/10.1038/ijo.2009.96.
[62] Atasoy D, Betley JN, Su HH, Sternson SM. Deconstruction of a neural circuit for hunger. Nature 2012;488:172–7. https://doi.org/10.1038/nature11270.
[63] Krashes MJ, Shah BP, Koda S, Lowell BB. Rapid versus Delayed Stimulation of Feeding by the Endogenously Released AgRP Neuron Mediators GABA, NPY, and AgRP. Cell Metabolism 2013;18:588–95. https://doi.org/10.1016/j.cmet.2013.09.009.
[64] Chen Y, Essner RA, Kosar S, Miller OH, Lin Y-C, Mesgarzadeh S, et al. Sustained NPY signaling enables AgRP neurons to drive feeding. ELife 2019;8:e46348. https://doi.org/10.7554/eLife.46348.
[65] Pomeroy AR, Rand MJ. Anticholinergic effects and passage through the intestinal wall of N-butylhyoscine bromide. Journal of Pharmacy and Pharmacology 1969;21:180–7. https://doi.org/10.1111/j.2042-7158.1969.tb08224.x.
[66] Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, Gray LA, et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell 2019;179:1129-1143.e23. https://doi.org/10.1016/j.cell.2019.10.031.
[67] Kohno D, Nakata M, Maekawa F, Fujiwara K, Maejima Y, Kuramochi M, et al. Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway. Endocrinology 2007;148:2251–63. https://doi.org/10.1210/en.2006-1240.
[68] Perello M, Scott MM, Sakata I, Lee CE, Chuang J-C, Osborne‐Lawrence S, et al. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. Journal of Comparative Neurology 2012;520:281–94. https://doi.org/10.1002/cne.22690.
[69] Burdakov D, Ashcroft FM. Cholecystokinin tunes firing of an electrically distinct subset of arcuate nucleus neurons by activating A-Type potassium channels. J Neurosci 2002;22:6380–7. https://doi.org/20026685.
[70] Su Z, Alhadeff AL, Betley JN. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity. Cell Rep 2017;21:2724–36. https://doi.org/10.1016/j.celrep.2017.11.036.
[71] Andreoli MF, De Francesco PN, Perello M. Gastrointestinal Hormones Controlling Energy Homeostasis and Their Potential Role in Obesity. In: Nillni EA, editor. Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function, Cham: Springer International Publishing; 2018, p. 183–203. https://doi.org/10.1007/978-3-319-89506-2_7.