[1]. Firestein, G.S., Evolving concepts of rheumatoid arthritis. Nature, 2003. 423(6937): p. 356-61.
[2]. Sparks, J.A., Rheumatoid Arthritis. Annals of internal medicine, 2019. 170(1): p. ITC1-ITC16.
[3]. Alamanos, Y. and A.A. Drosos, Epidemiology of adult rheumatoid arthritis. Autoimmunity reviews, 2005. 4(3): p. 130-6.
[4]. Collaborators, G.C.O.D., Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England), 2018. 392(10159): p. 1736-1788.
[5]. Deane, K.D., et al., Genetic and environmental risk factors for rheumatoid arthritis. Best practice & research. Clinical rheumatology, 2017. 31(1): p. 3-18.
[6]. Sedlazeck, F.J., et al., Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nature reviews. Genetics, 2018. 19(6): p. 329-346.
[7]. O'Connell, R.M., D.S. Rao and D. Baltimore, microRNA Regulation of Inflammatory Responses. Annual Review of Immunology, 2012. 30(1): p. 295-312.
[8]. Huang, D.W., B.T. Sherman and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 2009. 4(1): p. 44-57.
[9]. Smoot, M.E., et al., Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England), 2011. 27(3): p. 431-2.
[10]. Pauley, K.M., S. Cha and E.K.L. Chan, MicroRNA in autoimmunity and autoimmune diseases. Journal of autoimmunity, 2009. 32(3-4): p. 189-94.
[11]. Stanczyk, J., et al., Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis and rheumatism, 2008. 58(4): p. 1001-9.
[12]. Stanczyk, J., et al., Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis and rheumatism, 2011. 63(2): p. 373-81.
[13]. Zhang, S., et al., MicroRNA-340-5p suppressed rheumatoid arthritis synovial fibroblast proliferation and induces apoptotic cell number by targeting signal transducers and activators of transcription 3. Autoimmunity, 2020. 53(6): p. 314-322.
[14]. Kinjyo, I., et al., Positive and Negative Roles of IL-6, STAT3, and SOCS3 in Inflammatory Arthritis, in Advances in Experimental Medicine and Biology, Y. Choi, Y. Choi^Editors. 2007, Springer US: Boston, MA. p. 113-124.
[15]. Isomäki, P., et al., The expression of SOCS is altered in rheumatoid arthritis. Rheumatology (Oxford, England), 2007. 46(10): p. 1538-46.
[16]. O'Shea, J.J. and P.J. Murray, Cytokine signaling modules in inflammatory responses. Immunity, 2008. 28(4): p. 477-87.
[17]. Yoshimura, A., et al., Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis research & therapy, 2005. 7(3): p. 100-10.
[18]. ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao, SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways. China Biotechnology, 2015. 35(09): p. 50-56.
[19]. Goyal, A., et al., Monocyte survival factors induce Akt activation and suppress caspase-3. American journal of respiratory cell and molecular biology, 2002. 26(2): p. 224-30.
[20]. Malemud, C.J., The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future medicinal chemistry, 2015. 7(9): p. 1137-47.
[21]. Luo, X., et al., TLRs Play Crucial Roles in Regulating RA Synoviocyte. Endocrine, metabolic & immune disorders drug targets, 2020. 20(8): p. 1156-1165.
[22]. Kaisho, T. and S. Akira, Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends in immunology, 2001. 22(2): p. 78-83.
[23]. Song, G., G. Ouyang and S. Bao, The activation of Akt/PKB signaling pathway and cell survival. Journal of cellular and molecular medicine, 2005. 9(1): p. 59-71.
[24]. Jiang, X., et al., TLR2 Regulates Allergic Airway Inflammation and Autophagy Through PI3K/Akt Signaling Pathway. Inflammation, 2017. 40(4): p. 1382-1392.
[25]. Cho, M., et al., Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunology letters, 2007. 108(2): p. 121-8.
[26]. Yan, W., et al., Evaluation of recombinant CXCL8(3-73)K11R/G31P in muscle fibrosis and Trichinella larvae encapsulation in a murine model of trichinellosis. International immunopharmacology, 2016. 35: p. 323-326.
[27]. Shi, Y., et al., Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. Cell, 1991. 67(2): p. 377-88.
[28]. Lin, J., et al., Blocking of YY1 reduce neutrophil infiltration by inhibiting IL-8 production via the PI3K-Akt-mTOR signaling pathway in rheumatoid arthritis. Clinical and experimental immunology, 2019. 195(2): p. 226-236.
[29]. Li, X., M. Yu and C. Yang, YY1-mediated overexpression of long noncoding RNA MCM3AP-AS1 accelerates angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis. Journal of cellular biochemistry, 2020. 121(3): p. 2258-2267.
[30]. Jia, Z., et al., <p>LncRNA MCM3AP-AS1 Promotes Cell Proliferation and Invasion Through Regulating miR-543-3p/SLC39A10/PTEN Axis in Prostate Cancer</p>. OncoTargets and therapy, 2020. Volume 13: p. 9365-9376.