Variation in transcriptional regulation is a major cause of phenotypic diversity. Genome-wide association studies (GWAS) have shown that most functional variants reside in non-coding regions, where they potentially affect transcription factor (TF) binding and chromatin accessibility to alter gene expression. Pinpointing such regulatory variations, however, remains challenging. Here, we developed a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identified variations in target binding of the brassinosteroid (BR) responsive transcription factor ZmBZR1 in maize. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) in B73xMo17 F1s identified thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) was observed for about 14.3% of target genes. It correlated with over 550 loci containing sequence variation in BZR1-binding motifs and over 340 loci with haplotype-specific DNA methylation, linking genetic and epigenetic variations to ZmBZR1 occupancy. Comparison with GWAS data linked hundreds of ASB loci to important yield, growth, and disease-related traits. Our study provides a robust method for analyzing genome-wide variations of transcription factor occupancy and identified genetic and epigenetic variations of the BR response transcription network in maize.