Gait is an individual biometric behavior which can be detected based on distance which has different submissions in social security, forensic detection and crime prevention. Hence, in this paper, Advanced Deep Belief Neural Network with Black Widow Optimization (ADBNN-BWO) Algorithm is developed to identify the human emotions by human walking style images. This proposed methodology is working based on four stages like pre-processing, feature extraction, feature selection and classification. For the pre-processing, contrast enhancement median filter is used and Hu Moments, GLCM, Fast Scale-invariant feature transform (F-SIFT), in addition skeleton features are used for the feature extraction. To extract the features efficiently, the feature extraction algorithm can be often very essential calculation. After that, feature selection is performed. Then the classification process is done by utilizing the proposed ADBNN-BWO Algorithm. Based on the proposed method, the human gait recognition is achieved which utilized to identify the emotions from the walking style. The proposed method is validated by using the open source gait databases. The proposed method is implemented in MATLAB platform and their corresponding performances/outputs are evaluated. Moreover, the statistical measures of proposed method are also determined and compared with the existing method as Artificial Neural Network (ANN), Mayfly algorithm with Particle Swarm Optimization (MA-PSO), Recurrent Neural Network -PSO (RNN-PSO) and Adaptive Neuro Fuzzy Inference System (ANFIS) respectively.