1 Clot, E. et al. C–F and C–H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: How fluorine tips the scales. Acc. Chem. Res.44, 333-348 (2011).
2 Amii, H. & Uneyama, K. C–F bond activation in organic synthesis. Chem. Rev.109, 2119-2183 (2009).
3 Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science317, 1881-1886 (2007).
4 Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev.37, 320-330 (2008).
5 Fujiwara, T. & O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem.167, 16-29 (2014).
6 Theodoridis, G. in Advances in Fluorine Science Vol. 2 (ed Alain Tressaud) 121-175 (Elsevier, 2006).
7 Zhou, Y. et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: New structural trends and therapeutic Areas. Chem. Rev.116, 422-518 (2016).
8 Salwiczek, M., Nyakatura, E. K., Gerling, U. I. M., Ye, S. & Koksch, B. Fluorinated amino acids: Compatibility with native protein structures and effects on protein–protein interactions. Chem. Soc. Rev.41, 2135-2171 (2012).
9 Reichenbächer, K., Süss, H. I. & Hulliger, J. Fluorine in crystal engineering—“the little atom that could”. Chem. Soc. Rev.34, 22-30 (2005).
10 Rohde, D., Yan, C.-J. & Wan, L.-J. C–H···F hydrogen bonding: The origin of the self-assemblies of bis(2,2'-difluoro-1,3,2-dioxaborine). Langmuir22, 4750-4757 (2006).
11 Han, Z. et al. Imaging the halogen bond in self-assembled halogenbenzenes on silver. Science358, 206-210 (2017).
12 Zhang, G., Lu, J., Sabat, M. & Fraser, C. L. Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J. Am. Chem. Soc.132, 2160-2162 (2010).
13 Takamuku, T., Yamamoto, M., To, T. & Matsugami, M. Solvation structures of tetraethylammonium bromide and tetrafluoroborate in aqueous binary solvents with ethanol, trifluoroethanol, and acetonitrile. J. Phys. Chem. B124, 5009-5020 (2020).
14 Gavezzotti, A. & Presti, L. L. Building blocks of crystal engineering: A large-database study of the intermolecular approach between C–H donor groups and O, N, Cl, or F acceptors in organic crystals. Cryst. Growth Des.16, 2952-2962 (2016).
15 Marten, J., Seichter, W., Weber, E. & Böhme, U. Crystalline packings of diketoarylhydrazones controlled by a methyl for trifluoromethyl structural change. CrystEngComm10, 541-547 (2008).
16 Choudhury, A. R. & Guru Row, T. N. How realistic are interactions involving organic fluorine in crystal engineering? Insights from packing features in substituted isoquinolines. Cryst. Growth Des.4, 47-52 (2004).
17 Saha, B. K., Saha, A., Sharada, D. & Rather, S. A. F or O, Which one is the better hydrogen bond (Is it?) acceptor in C–H···X–C (X– = F–, O═) interactions? Cryst. Growth Des.18, 1-6 (2018).
18 van den Berg, J.-A. & Seddon, K. R. Critical evaluation of C–H···X hydrogen bonding in the crystalline state. Cryst. Growth Des.3, 643-661 (2003).
19 Ibrahim, M. A. A. & Moussa, N. A. M. Unconventional type III halogen···halogen interactions: A quantum mechanical elucidation of σ-hole···σ-hole and Di-σ-hole interactions. ACS Omega5, 21824-21835 (2020).
20 Loader, J. R., Libri, S., Meijer, A. J. H. M., Perutz, R. N. & Brammer, L. Highly fluorinated naphthalenes and bifurcated C–H···F–C hydrogen bonding. CrystEngComm16, 9711-9720 (2014).
21 Bronger, R. P., Kamer, P. C. & van Leeuwen, P. W. Influence of the bite angle on the hydroformylation of internal olefins to linear aldehydes. Organometallics22, 5358-5369 (2003).
22 van der Veen, L. A. et al. Electronic effect on rhodium diphosphine catalyzed hydroformylation: The bite angle effect reconsidered. J. Am. Chem. Soc.120, 11616-11626 (1998).
23 Breit, B. & Seiche, W. Hydrogen bonding as a construction element for bidentate donor ligands in homogeneous catalysis: regioselective hydroformylation of terminal alkenes. J. Am. Chem. Soc.125, 6608-6609 (2003).
24 Ustynyuk, Y. A., Babin, Y. V., Savchenko, V. G., Myshakin, E. M. & Gavrikov, A. V. Mechanism of ethylene hydroformylation on platinum complexes with hydrophosphoryl ligands: a DFT study. Russ. Chem. Bull.59, 686-694 (2010).
25 Sparta, M., Børve, K. J. & Jensen, V. R. Activity of Rhodium-Catalyzed Hydroformylation: Added Insight and Predictions from Theory. J. Am. Chem. Soc.129, 8487-8499 (2007).
26 Horváth, I. T. et al. Molecular engineering in homogeneous catalysis: One-phase catalysis coupled with biphase catalyst separation. The fluorous-soluble HRh(CO){P[CH2CH2(CF2)5CF3]3}3 hydroformylation system. J. Am. Chem. Soc.120, 3133-3143 (1998).
27 Wilhelmus, P., Van Leeuwen, N. M. & Roobeek, C. F. A process for the hydroformylation of olefins. United Kingdom patent GB2068377 (1981).
28 Dingwall, P. et al. Understanding a hydroformylation catalyst that produces branched aldehydes from alkyl alkenes. J. Am. Chem. Soc.139, 15921-15932 (2017).
29 Brown, C. K. & Wilkinson, G. Homogeneous hydroformylation of alkenes with hydridocarbonyltris-(triphenylphosphine)rhodium(I) as catalyst. J. Chem. Soc. A, 2753-2764 (1970).
30 Evans, D., Osborn, J. A. & Wilkinson, G. Hydroformylation of alkenes by use of rhodium complex catalysts. J. Chem. Soc. A, 3133-3142 (1968).
31 Luo, X. et al. Mechanism of rhodium-catalyzed formyl activation: A computational study. J. Org. Chem.81, 2320-2326 (2016).
32 Shaharun, M. S., Dutta, B. K. & Mukhtar, H. Ab initio energy calculations and macroscopic rate modeling of hydroformylation of higher alkenes by Rh-based catalyst. AlChE J.55, 3221-3233 (2009).
33 Fristrup, P., Kreis, M., Palmelund, A., Norrby, P.-O. & Madsen, R. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study. J. Am. Chem. Soc.130, 5206-5215 (2008).
34 Zuidema, E., Daura-Oller, E., Carbó, J. J., Bo, C. & van Leeuwen, P. W. N. M. Electronic ligand effects on the regioselectivity of the rhodium−diphosphine-catalyzed hydroformylation of propene. Organometallics26, 2234-2242 (2007).
35 Frisch, M. J. et al. Gaussian, Inc., Wallingford CT (2016).
36 Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.98, 5648-5652 (1993).
37 Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B37, 785-789 (1988).
38 Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys.58, 1200-1211 (1980).
39 Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098-3100 (1988).
40 Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B33, 8822-8824 (1986).
41 Peterson, K. A., Figgen, D., Dolg, M. & Stoll, H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. J. Chem. Phys.126, 124101 (2007).
42 Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D. & Windus, T. L. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model.59, 4814-4820 (2019).
43 Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem.68, 441-451 (1964).
44 Kamer, P. C., Van Leeuwen, P. W. & Reek, J. N. Wide bite angle diphosphines: Xantphos ligands in transition metal complexes and catalysis. Acc. Chem. Res.34, 895-904 (2001).
45 Karpfen, A. & Kryachko, E. S. Blue-shifted hydrogen-bonded complexes. II. CH3F···(HF)1⩽n⩽3 and CH2F2···(HF)1⩽n⩽3. Chem. Phys.310, 77-84 (2005).
46 Matsuura, H. et al. Experimental evidence for intramolecular blue-shifting C–H···O hydrogen bonding by matrix-isolation infrared spectroscopy. J. Am. Chem. Soc.125, 13910-13911 (2003).
47 Rodziewicz, P., Rutkowski, K. S., Melikova, S. M. & Koll, A. Cooperative effects in blue-shifted hydrogen bonded cluster of CF3H···(HF)1⩽n⩽3 from first principles simulations. Chem. Phys.361, 129-136 (2009).