Identification of the dss-1 locus for drought-sensitive phenotypes in CSSLs
A set of 140 rice CSSLs was constructed by introgressing the genomic segments of the drought-sensitive variety Lambayeque 1 into the genome of the drought-resistant variety PR403 through backcrossing (unpublished data; Fig. 1A). To elucidate the molecular regulatory mechanism underlying the drought-sensitive phenotype of Lambayeque 1, a drought stress treatment was applied to identify the major QTLs for drought-sensitive traits. PY6, one of the CSSLs, was highlighted for its drought-sensitive phenotype. After 10 days of drought treatment, the treated CSSLs were rewatered and allowed to recover for 3 days. In the screening, PY6, a CSSL, was identified as presenting a significant difference in survival rate (20.0%) compared with its recurrent parent PR403 (93.3%), whereas no significant difference was observed in the survival rate of PY6 and its donor parent Lambayeque 1 (Fig. 1B-C). During the drought stress treatment, the relative water content of the seedlings declined in PY6 and PR403 with decreasing soil moisture. However, starting at 120 h, a significant difference was observed between PY6 and PR403, and the former exhibited more severe dehydration at the later stage of the treatment, suggesting that drought stress disrupted the balance of water uptake and evaporation in PY6 (Fig. 1D). PY6 carries a 10-Mb chromosome segment derived from Lambayeque 1 on the short arm of chromosome 1. These results suggested that the segment from Lambayeque 1 may harbor a major QTL locus for the drought-sensitive phenotype of PY6. We designated this QTL as dss-1.
To reveal the genetic basis underlying the drought-sensitive phenotype afforded by the dss-1 locus, PY6 was backcrossed with the recurrent parent PR403 to construct a mapping population. The F1 plants exhibited drought resistance, which was similar to that of the parental line PR403. Then, an F2 population was generated to determine the inherited features of dss-1. In a 151-individual F2 population, 111 members showed drought resistance, and 40 showed drought-sensitive traits (resistant:sensitive≈3:1, χ2 = 0.1788 < χ2 0.05 = 3.84), indicating that drought-sensitive trait is controlled by a single recessive gene. In turn, the recombinants were screened for genetic linkage analysis, and dss-1 was ultimately narrowed down to a 4.01-Mb interval (Fig. 1E).
Drought induced H2O2 and MDA accumulation in the leaves of PY6
Given that previous reports indicated that drought stress was known to inhibit photosynthetic activity in plants due to an imbalance between light capture and its utilization [54] and coupled with the considerable potential for increased accumulation of superoxide and hydrogen peroxide in chloroplasts [55], we examined the accumulation of ROS and the activity of its scavenging enzymes in the leaves of drought-treated PY6 plants. Leaf samples were harvested at 4 sampling points (Fig. S1). In contrast to PR403, the increased accumulation of H2O2 was detected in PY6 from points 40 to 15, whereas the enhanced content could be observed only at point 22 in PR403; therefore, the significantly increased accumulation of H2O2 was detected in PY6 at sampling points 22 and 15 compared with that of their respective controls (Fig. 2A). The marked accumulation of H2O2 in the leaves of PY6 was confirmed by DAB staining (Fig. 2B). Consistently, the activity of POD, an enzyme for H2O2 scavenging, was upregulated in response to the accumulation of H2O2 (Fig. 2C). However, the activity of APX and CAT, another two major enzymes for H2O2 scavenging, was not induced, and no significant difference was observed between either genotype during drought treatment (Fig. S2A, B). For the dynamic changes in superoxide activity, the content of SOA (superoxide anion) and the activity of its scavenging enzyme SOD at point 15 exhibited significant differences between the two genotypes with higher values in PY6. However, the content of SOA in the whole period of drought treatment was not significantly greater than that in the untreated control (point 40) (Fig. 2D, E; Fig. S2C). Moreover, the contents of MDA, a major reactive aldehyde resulting from the peroxidation of polyunsaturated fatty acid (PUFA) constituents of biological membranes and a compound that acts as an indicator of abiotic stress-induced biomembrane damage, were significantly higher in PY6 than in PR403 at points 22 and 15 (Fig. 2F).
Taken together, our results suggest that the drought-sensitive phenotype may be caused by the overaccumulation of ROS, especially H2O2, which could result in severe damage to plant cells and peroxidation of the cell membrane, thereby leading to the dehydration of rice plants under drought stress.
Accumulation of ABA and stomatal modulation during drought stress treatment
As mentioned above, PY6 exhibited more severe dehydration at the later stage of treatment compared with the early stage, suggesting that PY6 either had a higher transpiration rate or lower water uptake ability when subjected to drought stress. ABA is a key regulator of plant stress responses and regulates a series of physiological processes, including tolerance to abiotic stresses and stomatal closure [56]. To determine the role of ABA-mediated stomatal movement in drought-induced severe dehydration in PY6, the ABA content and stomatal aperture status in drought-treated samples were examined. ABA accumulated during drought stress treatment, although no significant difference between PY6 and PR403 was observed at any sampling point (Fig. S2D). Scanning electron microscopy was used to examine the stomata status of leaf samples. Compared with that in the untreated control samples, the percentage of completely closed stomata in the drought-treated samples was significantly greater. However, PY6 and PR403 exhibited similar patterns in the ability to modulate their stomata in response to drought stress, and no significant difference in stomatal density was observed for either genotype (Fig. S2E). Therefore, these results suggested that severe dehydration in drought-treated PY6 do not result from a disruption of ABA-mediated stomatal transpiration regulation but, rather, may be caused by the limitation of water uptake or by other water loss pathways.
Comparative transcriptional profiling of PY6 under drought stress
To further reveal the impact of dss-1 on drought stress-induced H2O2 accumulation that may lead to the drought sensitivity of PY6, we investigated the transcriptional profiling of PY6 and PR403 in response to drought stress through RNA-seq. Principal component analysis (PCA) was initially performed based on all the transcriptional profiling data to detect the variations among the samples under the drought treatment (Fig. 3A). PC1 explained 37.98% of the total variation. The samples of CK40 and CK22/20 of both PY6 and PR403 were clearly separated by PC1, indicating the effect of the development imposed on the variation, while PC1 also separated the drought-treated samples of point 22 from those of point 20, indicating an effect of drought treatment on the transcriptomes of the samples. PC2 explained 27.94% of the total variation and clearly separated drought-treated samples from the parallel untreated samples (Fig. 3A). Moreover, both PY6 and PR403 samples from point 20 exhibited marked divergence from other sampling points, indicating that dramatic transcriptomic reprogramming occurred at this sampling point.
Drought-induced differentially expressed genes (DEGs) were identified by comparison with untreated controls (Table S2). It is worth noting that the development-dependent DEGs were detected in the same sampling points of well-watered samples under the same criteria, and they were excluded from the DEG set to avoid misinterpretation of drought-induced transcriptomic responses (Table S2-1~-8). Finally, at the two sampling points of PR403, 3052 DEGs, including 1135 upregulated and 1917 downregulated DEGs, were detected at point 22 (Table S2-9), while 5821 DEGs were detected at point 20, including 2383 upregulated and 3438 downregulated DEGs (Table S2-10). In PY6, 3145 (1748 upregulated/1397 downregulated) and 5529 (2655 upregulated/2874 downregulated) DEGs were detected at points 22 and 20, respectively (Table 1; Table S2-11, -12). Among the resultant DEGs, Venn diagram analysis revealed that 1142 DEGs were common between PR403 and PY6 at point 22, while 3184 were common between PR403 and PY6 at point 20, which accounted for 38.4% and 48.7% of the total DEGs at the two sampling points, respectively (Fig. 3B-C; Table 1). These findings demonstrated that PY6 has a similar genetic background and a drought stress response as PR403.
To verify the RNA-seq data quality, five genes were randomly selected for qRT-PCR. Similar trends of expression changes were observed between the qRT-PCR and RNA-seq data, indicating that the transcriptomic data were reliable for further analysis (Fig. S3A-E; Table S1).
Gene ontology enrichment analysis
GO enrichment analysis was performed to cluster the identified DEGs into the functional categories of biological process (BP), cellular component (CC), and molecular function (MF) subgroups. The results showed that all the DEGs were enriched in the GO terms that were related to photosynthesis in the chloroplasts (Fig. 4A-D, P£0.01). For instance, in terms of the BP group, the GO terms involving photosynthesis (GO:0015979); photosynthesis, light harvesting (GO:0009765); photosynthesis, light harvesting in photosystem I (GO:0009768); photosynthesis, light reaction (GO:0019684); chlorophyll biosynthetic process (GO:0015995); and porphyrin-containing compound biosynthetic process (GO:0006779) were highly significantly overrepresented. The overrepresented GO terms, such as those involving chloroplast part (GO:0044434), the chloroplast envelope (GO:0009941), chloroplast thylakoid (GO:0009534), the chloroplast thylakoid membrane (GO:0009535), and the chloroplast thylakoid lumen (GO:0009543) in the CC category (Fig. S4A-D, P£0.01), and the overrepresented terms of the MF category, such as pigment binding (GO:0031409) and chlorophyll binding (GO:0016168) (Fig. S5A-D, P£0.01), supported the identified DEGs are related to photosynthetic modulation in response to drought stress. In addition, the superoxide metabolism-related GO terms superoxide metabolic process (GO:0006801) and regulation of superoxide metabolic process (GO:0090322) were highly enriched among the DEGs identified at point 20 of PR403, suggesting the involvement of ROS scavenging processes in the drought stress response (Fig. 4C, P£0.01). GO enrichment analysis suggested that photosynthetic modulation plays an important role in the regulatory network of rice plants in response to drought stress; therefore, chloroplasts are target organelles for the drought stress response.
Construction of the coexpression network and identification of drought-induced hub genes
To further investigate the impact of dss-1, a major QTL conferred PY6 drought sensitive phenotype, on the regulatory network in response to drought stress and to identify the specific genes that are strongly correlated with drought-induced physiological alterations in rice, we performed a WGCNA. After removing the genes with a low FPKM (FPKM<1), a total of 23178 genes were used to construct a scale-free coexpression network based on the soft-thresholding power of β =12 (Fig. S6). According to the WGCNA results, the clusters with highly interconnected genes were defined as modules, and the genes in the same modules had high correlation coefficients. A total of 26 modules (coded with different colors to indicate different modules) were identified via the Dynamic Tree Cut method (core parameter: MEDissThres = 0.25) (Fig. 5A). With respect to the correlations of physiological traits with overrepresented modules, intriguing results were observed in the correlations. In general, the modules black, blue, and tan were negatively correlated with the majority of physiological traits, whereas the modules royalblue, brown, red, grey60, orange, and green were positively correlated with the traits, indicating that the genes clustered in a module have similar altered expression patterns in response to drought stress (Fig. 5B). Considering that significant differences in the contents of H2O2 and MDA were observed during drought stress, we focused on the correlations of H2O2 and MDA with gene modules and identified hub genes that were strongly correlated with the two drought-related physiological indicators (Fig. 2A, B, F; Fig. 5B, C, D). With the cut-off threshold of GS (Gene Significance) > 0.4, in all 26 of the modules, black (741 genes; R2=-0.69, P=3.0 ´ 10-5), blue (4810 genes; R2=-0.57, P=9.0 ´ 10-4), grey60 (148 genes; R2=0.67, P=4.0 ´ 10-5), and green (1099 genes; R2=0.61, P=3.0 ´ 10-4) were considered the modules that were strongly correlated with H2O2, and red (913 genes; R2=0.63, P=2.0 ´ 10-4), brown (3132 genes; R2=0.56, P=1.0 ´ 10-3), and royalblue (45 genes; R2=0.68, P=4.0 × 10-5) modules were considered strongly correlated with MDA (Fig. 5B, D). The genes in which the modules were clustered showed strong correlation with their respective modules (Fig. S7A, B). Furthermore, hub genes were identified based on the following cut-off thresholds: GS > 0.60 and MM (Module Membership) > 0.80 for the modules black, blue, green, and royalblue, and GS > 0.5 and MM> 0.8 for the modules grey60, red, and brown according to the threshold strengthening. After removing the genes with |log2FC|<1, the expression of all the obtained hub genes was significantly differentially altered in PY6 and PR403 under drought stress and were highlighted in subsequent functional analyses (Fig. S8A-F; Table S3-1~-7). Hereafter, we designated these hub genes as DEHGs.
Functional enrichment analysis of hub genes correlated with H2O2 accumulation
GO enrichment analysis was performed to functionally cluster the hub genes in the modules that were strongly correlated with H2O2. A total of 115 and 204 DEHGs were identified in the modules black and blue, respectively (Table S3-1, -2). In line with the abovementioned results, these hub genes were highly enriched in the GO terms involving chloroplast (GO:0009507); the chloroplast envelope (GO:0009941); thylakoid (GO:0009579); chloroplast stroma (GO:0009570); chlorophyll binding (GO:0016168); photosynthesis (GO: GO:0015979); photosystem I (GO:0009522); photosynthesis, light harvesting (GO:0009765); and photosynthesis, light reaction (GO:0019684). These terms are related to photosynthesis (Qvalue £ 0.05) (Fig. S9A-B; Table S5-1, -2). Interestingly, in agreement with previous reports [57], the expression of the majority of the DEHGs in the modules black and blue was downregulated without marked log2FC differences (|log2FCPY6-log2FCPR403|≥1, P<0.05) observed between PY6 and PR403 during drought treatment (Fig. 6A, B; Fig. S8A, B), implying that PY6 and PR403 have a common drought-responsive regulation and that their photosynthetic activities were inhibited in response to drought stress.
The module grey60 was enriched with 41 DEHGs (Table S3-3). The expression of most of these DEHGs was elevated under drought stress (Fig. S8C). Among these genes, eight showed differential expression with markedly different magnitudes at least at one sampling point between two genotypes, exhibiting a strong dynamic induction in response to drought treatment (|log2FCPY6-log2FCPR403|≥1, P<0.05) (Fig. 6C; Table 2). The expression of Os01G0842500 and Os03G0273200, both of which encodes proteins that are similar to laccase and both of which were enriched in GO terms involving the apoplast (GO:0048046)/lignin catabolic process (GO:0046274)/cytoplasmic membrane-bounded vesicle (GO:0016023)/oxidoreductase activity (GO:0016491), was consistently enhanced at two points of both PY6 and PR403 and showed higher magnitudes in PY6 (particularly at point 20) (Fig. 6C; Fig. S9C; Table 2; Table S5-3). Five genes (Os01G0702700, Os06G0131700, Os05G0543600, Os03G0433200, and Os04G0508500), which are annotated as transcription factors and mainly enriched in GO terms involving DNA binding (GO:0003677), sequence-specific DNA binding transcription factor activity (GO:0003700), and response to freezing (GO:0050826), were significantly consistently induced to a certain extent at point 22 and were downregulated at point 20 in PR403, whereas they were significantly induced only at point 20 in PY6, with the exception of Os03G0433200 (Fig. 6C; Table 2; Table S5-3). Os01G0702700, Os05G0543600, and Os04G0508500 are MYB family TFs, and Os06G0131700 is a NAC TF. A recent study suggested that Os06G0131700 (OsSWN1) is related to secondary cell wall formation [58], implying that secondary cell wall formation may play a certain role in drought stress resistance. In addition, Os08g0189200 is annotated as a gene encoding Germin-like protein 8-3 and was suggested to be involved in disease resistance [59]. A different upregulation pattern of this gene was observed in PY6 and PR403 in response to drought stress (Fig. 6C; Table 2).
A total of 96 hub genes were identified in the module green, including 36 downregulated and 60 upregulated genes in response to drought (Fig. S8D; Table S3-4). GO enrichment analysis revealed that the majority of the overrepresented GO terms were related to oxidation-reduction process (GO:0055114), response to salt stress (GO:0009651), carbohydrate metabolic process (GO:0005975), biosynthetic process (GO:0009058), and metabolic process (GO:0008152). These hub genes were sublocalized to distinct cellular components and have various molecular functions (Fig. S9D; Table S5-4). However, with the exception of iron-sulfur cluster binding (GO:0051536), no GO term was significantly overrepresented in our analysis (Table S5-4). It is worth noting that only 1 hub gene, OS04G0685300, which encodes a protein with harpin-induced 1 domain, showed significant differential expression with a greater upregulation magnitude at two points of PY6 (2.03/2.67) compared with those in PR403 (Table S3-4).
Taken together, the functional annotation of the hub genes identified in the H2O2-related modules suggested that both PY6 and PR403 experienced inhibition of drought-triggered photosynthetic activity, leading to the accumulation of H2O2 in the rice plants. The hub genes with highly differential expression identified in the module grey60 may be responsible for the accumulation of H2O2 in rice plants.
Functional enrichment analysis of hub genes correlated with MDA accumulation
MDA is an important indicator of membrane lipid peroxidation. The modules red, brown, and royalblue were strongly correlated with MDA under drought treatment; there were 303, 304, and 13 hub genes identified in these modules, respectively (Table S3-5~-7). For the module red, GO analysis revealed that the hub genes are involved in biotic stress and defense responses (Fig. S10A; Table S5-5). Among these hub genes, 29 showed differential expression at least at one sampling point between two genotypes (|log2FCPY6-log2FCPR403|≥1, P<0.05) (Fig. 7A; Table 3). Strikingly, most of them consistently showed similar expression patterns in both genotypes, with elevated transcripts at point 22, after which the expression levels then declined to levels that were comparable to or even lower than those of their respective untreated controls (Fig. S8E; Table 3). GO analysis revealed that these genes were involved in biotic stress responses; for example, the GO terms involving defense response (GO:0006952), response to biotic stimulus (GO:0009607), response to stress (GO:0006950), and response to endogenous stimulus (GO:0009719) were overrepresented in the results (Fig. 7A; Table S5-5). Of these genes, 8 were WRKY family TFs (Fig. 7A; Table 3). Specifically, OsWRKY70 (Os05g0474800) and OsWRKY76 (Os09g0417600) have been suggested to participate in ABA signaling and the biotic stress response [31, 60]. OS01g0185900 and OS05g0322900 exhibited relatively higher upregulated expression at point 22, whereas two other genes, OS05g0571200 and OS11G0117600, had relatively higher expression at point 20 of PY6 than at PR403 (Fig. 7A; Table 3). Considering the accumulation of MDA in PY6 and PR403, these results implied that four genes may be positively correlated with the overaccumulation of MDA and lead to the death of PY6 under drought stress. Moreover, PR-10a (OS12g0555300), which functions at the downstream of jasmonic acid pathway and is positively regulated by WRKY TFs in response to drought and high-salt stresses [36, 61], and three other PR-10 protein family hub genes (Os12g0555200, Os12g0555500, and Os12g0555000), which were annotated as genes encoding probenazole-inducible PBZ1 proteins and are involved in disease resistance, exhibited a higher magnitude of upregulated expression at two sampling points of PY6 compared with PR403 (Fig. 7A; Table 3). BSR-d1/ZFP36 (Os03g0437200), which encodes a C2H2-type zinc finger protein, participates in ABA-OsMPK transduction, which results in the accumulation of H2O2 [62, 63]. Similarly, this gene also had a higher upregulated expression in PY6 than in PR403 (Table 3). In addition, the expression of OS02g0121700 and OS02g0570400 was dramatically induced in PY6 during the whole period of drought treatment, whereas these genes were significantly induced only at point 22 of PR403, after which their expression levels decreased to those of the untreated control (Fig. 7A; Table 3). These genes encode a terpenoid synthase domain-containing protein and ent-kaurene synthase 1A, which are involved in gibberellin (GA) biosynthesis, suggesting a role of GA in the drought stress response in rice. OS04g0109100, a gene annotated as concanavalin A-like lectin/glucanase, had a similar expression pattern in both genotypes.
In total, 18 and 13 DEHGs were identified in the modules brown and royalblue, respectively (Fig. 7B, C; Table 4; Table S4). GO analysis revealed that the DEHGs in the module brown play different roles in various biological processes, including response to stress (GO:0006950), response to endogenous stimulus (GO:0009719), protein phosphorylation (GO:0006468), protein metabolic process (GO:0019538), lipid metabolic process (GO:0006629), carbohydrate metabolic process (GO:0005975), protein folding (GO:0005515), regulation of transcription (GO:0006355), and signal transduction (GO:0007165) (Fig. 7B; Table S5-6). Nearly all of these genes were induced at point 22 and were repressed at point 20 in response to drought in both genotypes. Although they have a similar expression pattern, a different extent of downregulation was observed in several hub genes; for example, OS11G0569300, OS01G0971800, OS04G0675400, and OS09G0243200 showed a lower extent of downregulation at point 20 of PY6, while OS07G0201500 and OS11G0209600 showed a lower extent of downregulation at point 20 of PR403 (Fig. 7B; Table S4). In the module royalblue, only one GO term was significantly overrepresented due to the relatively low number of DEHGs. The striking feature of the expression pattern of the hub genes was that their transcripts were dramatically induced by drought at point 22 of PY6, and their levels were also slightly reduced at the next sampling point. Interestingly, Os04g0494100 and Os11g0592200 were annotated as genes encoding PR3 and PR4 family proteins, which have plant chitinase activity. Os03g0663600 and Os12g0630200 are two genes encoding pathogenesis-related thaumatin-like proteins, which are members of the PR5 family, suggesting that these genes played roles in the cross-talk between drought and biotic stresses in this study (Fig. 7C; Table 4; Table S5-7).