In the present study, we demonstrated that pathological responses to preoperative chemoradiotherapy predicted locoregional control rates. Although our patients received low-dose irradiation (median 30 Gy, range 22-36 Gy), locoregional recurrence was not detected in those with favorable pathological responses. The present results indicate the potential of a favorable pathological response as a good surrogate marker for controlling microscopic and macroscopic tumors even with low-dose irradiation in combination with chemotherapy and surgery. Low-dose irradiation may result in fewer adverse events and better QOL.
Previous studies reported a relationship between the prognosis of patients with oral or oropharyngeal cancer and responses to preoperative chemoradiotherapy [10,11]. Patients with stage II-IV oral or oropharyngeal cancer were treated with preoperative chemoradiotherapy (50 Gy in 25 daily fractions and concurrent chemotherapy with mitomycin C and fluorouracil), followed by radical surgery. Two-thirds of patients were responders, who were defined as having no vital tumor or minimal tumor remnants encompassing less than 5%. Locoregional control was significantly better for responders than for non-responders (2 years; 92.4-94.2% vs. 68.0-69.8%, p<0.001) [11]. Kirita et al. reported a relationship between survival and pathological responses after preoperative chemoradiotherapy (40 Gy in 20 daily fractions, cisplatin- or carboplatin-based chemotherapy) in patients with stage II-IV tongue cancer. Responders were defined as grades 2b, 3, and 4 based on the Oboshi/Shimosato classification. Progression-free survival rates were higher for responders than for non-responders (2 years; 95.7-100 vs. 50%). Favorable pathological responses (grades 3/4 in 25/5 patients, respectively) were observed in 30 patients (69.8%) based on our definition [10]. The present study showed a favorable pathological response based on the Oboshi/Shimosato classification in 41.2% of patients, which was lower than that in previous studies. This discrepancy may be attributed to lower-dose preoperative irradiation and differences in chemotherapy regimens, pathological response criteria, and patient backgrounds. However, the prognosis of responders in the present study was similar to that in previous studies, even though our patients received lower-dose irradiation. Therefore, lower-dose irradiation may be sufficient for patients with favorable pathological responses. To the best of our knowledge, few studies have investigated the relationship between the prognosis of patients with oral cancer and responses to preoperative low-dose chemoradiotherapy.
Surgical resection may exert adverse effects on appearance, swallowing, speech, and shoulder function, while the addition of adjuvant radiotherapy may cause xerostomia, altered taste, dental decay, and osteoradionecrosis with deteriorating dysphagia [12]. Combined treatments may provide the best chance of a cure at the cost of more frequent and severe adverse events and lower QOL. A systematic review of 26 retrospective studies on QOL in head and neck cancer patients treated with surgery alone or in combination with adjuvant radiotherapy demonstrated that the addition of adjuvant radiation worsened mouth dryness, thick saliva, and difficulty with mouth opening [4]. The current National Comprehensive Cancer Network guidelines recommend adjuvant radiotherapy of at least 44 and 60 Gy at 2 Gy/fraction to lower and higher risk regions of the neck, respectively [1]. Radiation dose-response relationships were previously reported between swallowing structures and late dysphagia [13] and the parotid glands and late xerostomia [5,14]. Lee et al. demonstrated that the threshold value of the parotid mean dose for the incidence of LENT-SOMA grade 3 or higher xerostomia was 20 Gy [5]; however, there was no threshold dose for RTOG/EORTC grade 4 xerostomia in the study by Dijkema et al. [14]. Severe late xerostomia was observed in 50% of patients with parotid mean doses of 39.9-43.6 Gy [5,14]. A QUANTEC review recommended that the mean dose to each parotid gland needs to be kept as low as possible, consistent with desired clinical target volume coverage [15]. Levendag et al. reported that the threshold value in the superior constrictor muscle, one of the swallowing structures, for the incidence of RTOG grade 3 or more dysphagia was 21 Gy [13]. Intensity-modulated radiation therapy (IMRT) is a useful technique for delivering a high dose to the tumor and minimizing the dose to organs at risk (OAR) by varying the beam intensity in the radiation field. This technique was previously shown to reduce the incidence and degree of late adverse events, including late xerostomia and dysphagia, without decreasing locoregional tumor control [16,17]. However, in a situation in which parotid glands and swallowing structures are within or near tumor tissues, IMRT cannot reduce the radiation dose for these OAR sufficiently when standard high-dose radiotherapy consisting of 70 Gy in curative settings or 60 to 66 Gy in adjuvant settings was delivered in 2-Gy fractions. Previous studies demonstrated that the average mean doses to pharyngeal constrictors and the ipsilateral/contralateral parotid gland were 58 and 47.6/25.4 Gy, respectively, in head and neck cancer patients treated with standard curative radiotherapy, even with the IMRT technique [16,17]. Therefore, lower-dose irradiation consisting of 30 Gy in 2-Gy fractions in the present study is considered to offer the clinically meaningful benefit of alleviating late radiation toxicity. Ongoing clinical trials are investigating whether dose de-escalations may be safely performed without the worsening of treatment outcomes in head and neck cancer patients, mainly human papilloma virus (HPV)-related oropharyngeal cancer patients, in curative or adjuvant radiotherapy settings [18]. Although the prognosis of HPV-related head and neck cancer patients is good [19], the low incidence of HPV-related oral cancer (13.8% by p16 positivity) suggests a minor role in oncogenesis in Japanese oral cancer patients [20]. Although the majority of our patients were considered to have HPV-unrelated oral cancer, preoperative lower-dose radiotherapy with chemotherapy and surgery may be sufficient for tumor control in patients with favorable pathological responses.
The Japanese oral cancer guidelines recommend pre- or postoperative chemoradiotherapy for better locoregional control and OS in patients with advanced oral cancer [3]. The NCCN guidelines recommend postoperative radiotherapy for oral cancer patients with adverse risk features, including extranodal extension, a positive margin, pT3 or T4 primary tumors, N2 or N3 nodal disease, nodal disease at level IV or V, perineural invasion, vascular embolism, and lymphatic invasion, without describing their recommendations on preoperative radiotherapy for oral cancer. Since our patients were treated with preoperative chemoradiotherapy and surgery, the pathological data obtained cannot be compared with those from patients undergoing upfront surgery. In our study, about half of the patients (10 of 21 patients) with clinically more than one positive neck node were downstaged to no or one pathologically positive neck node by preoperative chemoradiotherapy. Systematic reviews on the diagnostic accuracy of oral cancer demonstrated that CT and MRI were useful for evaluating the extension of the primary tumor site, and FDG-PET may contribute to the detection of metastatic cervical lymph nodes [21]. Clinical staging by multi-modality imaging is consistent with pathological staging in oral cancer. The pretreatment work-up in the present study revealed that 76.5% of our patients had clinical T3-4 and/or clinical N2-3 and/or recurrent disease, while the remaining 12 patients had clinical T2N0-1. Occult metastases have been reported in 13–33% of T1 tumors and 37–53% of T2 tumors at the time of diagnosis, even in clinical early T-stage and node-negative oral cancer patients classified by morphological imaging only [22]. Some of our patients with clinical T2N0-1 may have lymph node metastases pathologically and be suitable for postoperative radiotherapy. Therefore, many of our patients receiving preoperative chemoradiotherapy and undergoing surgery may be candidates for upfront surgery and postoperative chemoradiotherapy, although there was a possibility of overtreatment with preoperative chemoradiotherapy in some of our early stage oral cancer patients. The National Cancer Database study showed the patients with clinical T3-4 oral cancer had a 3-year OS of 49.7% when treated with surgery and postoperative radiotherapy compared with 36.0% when treated with definitive chemoradiotherapy [23]. A study by Zhong et al. demonstrated that 2-year OS and 2-year progression-free survival (PFS) were 90.1 and 79.9% in the clinical T3-4 oral cancer patients receiving induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery and postoperative radiotherapy (about 95% of the patients received at least 54Gy irradiation), respectively [24]. Our clinical T3-4 patients had a 2-year OS and 2-year PFS of 83.2 and 66.3%, respectively. Our treatment outcomes might not be inferior to those in the above-described studies.
The present study has several limitations. The sample size in this single-institution study was small. Furthermore, it was a retrospective study that may have had a selection bias. Several patients with locoregionally advanced disease underwent other treatments, including curative radiotherapy or upfront surgery with postoperative radiotherapy because they were older or had comorbidities. Therefore, the present results cannot be generalized to locoregionally advanced oral cancer patients with an older age and comorbidities. In addition, the definition of favorable pathological response was different among studies. Favorable pathological response was defined as the absence of any viable tumor cells (grades 3 and 4) in our study, whereas it was defined as a few or no viable tumor cells (grades 2b-4) in a study of Kirita et al. [10]. Judging whether viable tumor cells were present (grades 0-2b) or absent (grades 3 and 4) seemed more concordant between observers than calculating the number of viable tumor cells, which was based on the discrimination between grades 2a and 2b. However, the overestimation bias of grade 3 response may exist if a small number of tumor sections for evaluation leads to overlooking viable tumor cells. This bias can be minimized in our study because the number of tumor sections for evaluation was thought to be enough (median 7, range: 1-13). Furthermore, we selected pepleomycin, a bleomycin derivative with less pulmonary toxicity than bleomycin, as the radiation sensitizer because it was expected to be less myelotoxic than platinum-based chemotherapy even though it has been associated with an increased risk of pulmonary fibrosis and more severe mucositis. Concurrent chemoradiotherapy with bleomycin has been administered to patients with head and neck cancer and esophageal cancer [25,26]. Platinum-based chemoradiotherapy is now the standard treatment regimen for these cancers, partly because of the pulmonary toxicity of bleomycin and clinical evidence supporting the utility of platinum-based chemoradiotherapy in various cancers. None of the patients in the present study developed pulmonary fibrosis, which may have been due to the continuous injection of pepleomycin [8]. Another limitation is that the adverse events of radiotherapy, including dry mouth and dysphagia, were not systematically reported for patients in the present study, although low-dose irradiation was expected to alleviate toxicity. The frequency and severity of adverse events might be underestimated in our study. Prospective QOL survey will be needed to validate our results. Preclinical studies previously demonstrated that the administration of pepleomycin sensitized the effects of radiation on cancer cells, but not on normal oral mucosal or salivary gland cells [27,28]. The tumor specificity of this drug may enable lower-dose irradiation to control oral cancer with negligible damage to normal tissues. Further studies are needed to confirm these results. In addition, surgical and radiation techniques were non-uniform because they were selected at the discretion of the surgeon and radiation oncologist. However, no significant differences were observed in surgical or radiation techniques between patients with favorable and unfavorable pathological responses.