Intuitionistic fuzzy sets (IFSs), including member and nonmember functions, have many applications in managing uncertain information. The similarity measures of IFSs proposed to represent the similarity between different types of sensitive fuzzy information. However, some existing similarity measures do not meet the axioms of similarity. Moreover, in some cases, they could not be applied appropriately. In this study, we proposed some novel similarity measures of IFSs constructed by combining the exponential function of membership functions and the negative function of non-membership functions. In this paper, we also proposed a new entropy measure as a stepping stone to calculate the weights of the criteria in the proposed multi-criteria decision making (MCDM) model. The similarity measures used to rank alternatives in the model. Finally, we used this MCDM model to evaluate the quality of software projects.