The new type of coronavirus is called COVID-19. The virus can cause respiratory diseases, accompanied by cough, fever, difficulty breathing, and in severe cases, it can also cause symptoms such as pneumonia. It began to spread at the end of 2019 and has now spread to all parts of the world. The limited test kits and increasing number of cases encourage us to propose a deep learning model that can help radiologists and clinicians use chest X-rays to detect COVID-19 cases and show the diagnostic features of pneumonia. In this study, our methods are: 1) Propose a data enhancement method to increase the diversity of the data set, thereby improving the generalization performance of the network. 2) Using the deep convolutional neural network model DPN-SE, an attention mechanism is added on the basis of the DPN network, which greatly improves the performance of the network. 3) Use the lime interpretable library to mark the X-ray, the characteristic area on the medical image that is helpful for the doctor to make a diagnosis. The model we proposed can obtain better results with the least amount of data preprocessing given limited data. In general, the proposed method and model can effectively become a very useful tool for clinical practitioners and radiologists.