1 Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
2 Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652-657 (2008).
3 Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chem. Rev. 120, 7745-7794, doi:10.1021/acs.chemrev.0c00431 (2020).
4 Wang, C. et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem. Rev. 120, 4257-4300, doi:10.1021/acs.chemrev.9b00427 (2020).
5 Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 1-12 (2020).
6 Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251-255 (2020).
7 Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Mater. 5, 229-252 (2020).
8 Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503-11618 (2014).
9 Banerjee, A., Wang, X., Fang, C., Wu, E. A. & Meng, Y. S. Interfaces and interphases in All-Solid-State batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878-6933 (2020).
10 Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nature Reviews Mater. 5, 105-126, doi:10.1038/s41578-019-0157-5 (2019).
11 Lim, H.-D. et al. A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Mater. 25, 224-250, doi:10.1016/j.ensm.2019.10.011 (2020).
12 Wu, J., Liu, S., Han, F., Yao, X. & Wang, C. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv. Mater., e2000751, doi:10.1002/adma.202000751 (2020).
13 Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572-579, doi:10.1038/nmat4821 (2017).
14 Luo, W. et al. Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. J. Am. Chem. Soc. 138, 12258-12262, doi:10.1021/jacs.6b06777 (2016).
15 Huo, H. et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 61, 119-125, doi:10.1016/j.nanoen.2019.04.058 (2019).
16 Xiang, Y., Li, X., Cheng, Y., Sun, X. & Yang, Y. Advanced characterization techniques for solid state lithium battery research. Mater. Today 36, 139-157, doi:10.1016/j.mattod.2020.01.018 (2020).
17 Knehr, K. W. et al. Understanding full-cell evolution and non-chemical electrode crosstalk of li-ion batteries. Joule 2, 1146-1159 (2018).
18 Chang, W. et al. Understanding adverse effects of temperature shifts on Li-Ion batteries: an operando acoustic study. J. Electrochem. Soc. 167, 090503 (2020).
19 Liu, H. et al. Photoacoustic imaging of lithium metal batteries. ACS Applied Energy Mater. 3, 1260-1264 (2019).
20 Ladpli, P., Kopsaftopoulos, F., Nardari, R. & Chang, F.-K. in Smart Materials and Nondestructive Evaluation for Energy Systems 2017. 1017108 (International Society for Optics and Photonics).
21 Gold, L. et al. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission–Concept and laboratory testing. J. Power Sources 343, 536-544 (2017).
22 Cheng, M. et al. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries. Adv. Mater., 1800615, doi:10.1002/adma.201800615 (2018).
23 Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46, 176-184, doi:10.1016/j.nanoen.2017.12.037 (2018).
24 Deng, Z. et al. Recent Progress on Advanced Imaging Techniques for Lithium‐Ion Batteries. Adv. Energy Mater. 2000806, doi:10.1002/aenm.202000806 (2020).
25 Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. Fundamentals of acoustics. (1999).
26 Xue, Z., He, D. & Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218-19253, doi:10.1039/c5ta03471j (2015).
27 Huang, C., Leung, C. L. A., Leung, P. & Grant, P. S. A Solid-State Battery Cathode with a Polymer Composite Electrolyte and Low Tortuosity Microstructure by Directional Freezing and Polymerization. Adv. Energy Mater. 2002387, doi:10.1002/aenm.202002387 (2020).
28 Huo, H. Y. et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59-67, doi:10.1016/j.ensm.2019.01.007 (2019).
29 Huo, H. et al. Rational Design of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic” Electrolytes for Dendrite-Free Solid-State Batteries. Advanced Energy Mater. 9, 1804004, doi:10.1002/aenm.201804004 (2019).
30 Zhang, J. et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447-454, doi:10.1016/j.nanoen.2016.09.002 (2016).
31 Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105-1111, doi:10.1038/s41563-019-0438-9 (2019).
32 Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. & Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 5, 2326-2352, doi:10.1016/j.chempr.2019.05.009 (2019).
33 Shao, Y. et al. Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Lett. 3, 1212-1218 (2018).
34 Huo, H. et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun. 12, 176, doi:10.1038/s41467-020-20463-y (2021).
35 Liang, J. et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 78, 105107, doi:10.1016/j.nanoen.2020.105107 (2020).
36 Xu, Q. et al. The photocatalytic degradation of chloramphenicol with electrospun Bi2O2CO3-poly(ethylene oxide) nanofibers: the synthesis of crosslinked polymer, degradation kinetics, mechanism and cytotoxicity. RSC Advances 9, 29917-29926, doi:10.1039/c9ra06346c (2019).
37 Sheng, O. et al. In Situ Construction of a LiF-Enriched Interface for Stable All-Solid-State Batteries and its Origin Revealed by Cryo-TEM. Adv. Mater. 32, e2000223, doi:10.1002/adma.202000223 (2020).
38 Mirsakiyeva, A. et al. Initial Steps in PEO Decomposition on a Li Metal Electrode. J. Phys. Chem. C 123, 22851-22857, doi:10.1021/acs.jpcc.9b07712 (2019).
39 Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 117, 10403-10473, doi:10.1021/acs.chemrev.7b00115 (2017).
40 Marchiori, C. F. N., Carvalho, R. P., Ebadi, M., Brandell, D. & Araujo, C. M. Understanding the Electrochemical Stability Window of Polymer Electrolytes in Solid-State Batteries from Atomic-Scale Modeling: The Role of Li-Ion Salts. Chem. Mater. 32, 7237-7246, doi:10.1021/acs.chemmater.0c01489 (2020).
41 Wang, Y. et al. An In Situ Formed Surface Coating Layer Enabling LiCoO2 with Stable 4.6 V High Voltage Cycle Performances. Adv. Energy Mater. 10, 2001413, doi:10.1002/aenm.202001413 (2020).
42 Qiu, J. et al. Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte. Adv. Funct. Mater. 30, 1909392, doi:10.1002/adfm.201909392 (2020).
43 Li, Y., Cao, Y. & Guo, X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes. Solid State Ionics 253, 76-80 (2013).
44 Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508-517 (1990).
45 Delley, B. From molecules to solids with the DMol 3 approach. J. Chem. Phys. 113, 7756-7764 (2000).
46 Clark, S. J. et al. First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Mater. 220, 567-570 (2005).