1. Kral A., Kronenberger W. G., Pisoni D. B., O’Donoghue G. M., 2016. Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurolology 15(6):610–21. doi: 10.1016/S1474-4422(16)00034-X.
2. Niparko J., Tobey E. A., Thal D. J., Eisenbrg L. S., Wang N. Y., Quittner A. L., Fink N. E., CDaCI Investigative Team., 2010. Spoken language development in children following cochlear implantation JAMA. 303(15):1498–1506. doi: 10.1001/jama.2010.451.
3. De Raeve L., 2010. A longitudinal study on auditory perception and speech intelligibility in deaf children implanted younger than 18 months in comparison to those implanted at later ages. Otol Neurotol. 31(8):261–267. doi: 10.1097/MAO.0b013e3181f1cde3.
4. Fallon J. B., Irvine D. R. F., Shepherd R. K., 2009. Neural prostheses and brain plasticity J Neural Eng, 6(6):065008. doi: 10.1088/1741-2560/6/6/065008.
5. Houston D. M., Stewart J., Moberly A., Hollich G., Miyamoto R. T., 2012. Word learning in deaf children with cochlear implants: effects of early auditory experience. Dev Sci. 15:448–61. doi: 10.1111/j.1467-7687.2012.01140.x.
6. Oziębło D., Obrycka A., Lorens A., Skarżyński H., Ołdak M., 2020. Cochlear implantation outcome in children with DFNB1 locus pathogenic variants. J Clin Med. 9(1):228. doi: 10.3390/jcm9010228.
7. Abdurehim Y., Lehmann A., Zeitouni A. G., 2017. Predictive value of GJB2 mutation status for hearing outcomes of pediatric cochlear implantation. Otolaryngol Head Neck Surg. 157(1):16–24. doi: 10.1177/0194599817697054.
8. Shearer A. E., Eppsteiner R. W., Frees K., Tejani V., Sloan-Heggen C. M., Brown C., Abbas P., Dunn C., Hansen M. R., Gantz B. J., Smith R. J. H., 2017. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear Res. 348:138–142. doi: 10.1016/j.heares.2017.02.008. Epub 2017 Feb 15.
9. Park J. H., Kim A. R., Han J. H., Kim S. D., Kim S. H., Koo J.-W., Oh S. H., Choi B. Y., 2017. Outcome of cochlear implantation in prelingually deafened children according to molecular genetic etiology. Ear Hear. 38(5):e316–e324. doi: 10.1097/AUD.0000000000000437.
10. Reinert J., Honegger F., Gurtler N., 2010. High homogeneity in auditory outcome of pediatric CI-patients with mutations in Gap-Junction-Protein Beta2. Intl J Pediatr Otorhinolaryngol. 74(7):791–5. doi: 10.1016/j.ijporl.2010.04.002.
11. Eppsteiner R. W., Shearer A. E., Hilderbrand M. S., DeLuca A. P., Haihong J., Dunn C. C., Black-Ziegelbein E. A., Casavant T. L., Braun T. A., Scheetz T. E., Scherer S. E., Hansen M. R., Ganz B. J., Smith R. J. H., 2012. Prediction of cochlear implant performance by genetic mutation: the spiral ganglion hypothesis Hear Res. 292(1–2):51–58. doi: 10.1016/j.heares.2012.08.007.
12. Angeli S. I., Suarez H., Lopez H., Balkany T., Liu X. Z., 2011. Influence on DFNB1 status on expressive language in deaf children with cochlear implants. Otol Neurotol. 32: 1437–1443. doi: 10.1097/mao.0b013e31823387f9
13. Chen, J., Chen J., Zhu, Y., Liang, C., Zhao, H. B., 2014. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochem Biophys Res Commun. 448, 28–32. doi:10.1016/j.bbrc.2014.04.016.
14. Kikuchi T., Adams, J. C., Miyabe, Y., So, E., Kobayashi, T., 2000. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc. 33(2): 51–56. doi:10.1007/s007950070001.
16. Lee H.-J., Giraud A.-L., Kang E., Oh S.-H., Kang H., Kim C.-S., Lee D.-S., 2007. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex. 17:909–917 doi:10.1093/cercor/bh1001.
17. Beroun A., Mitra S., Michaluk P., Pijet B., Stefaniuk M., Kaczmarek L., 2019. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci. 76(16):3207–3228. doi: 10.1007/s00018-019-03180-8.
18. Vafadari B., Salamian A., Kaczmarek L., 2016. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem. 139 Suppl 2:91–114. doi: 10.1111/jnc.13415.
19. McGregor N., Thompson N., O’Connell K.S., Emsley R., van der Merwe L., Warnich L., 2018. Modification of the association between antipsychotic treatment response and childhood adversity by MMP9 gene and its variants in a first-episode schizophrenia cohort. Psychiatry Res. 262:141–148. doi: 10.1016/j.psychres.2018.01.044.
20. Reinhard S. M., Razak K., Ethell I., 2015. A delicate balance: role of MMP9 in brain development and pathophysiology of neurodevelopmental disorders. Front Cell Neurosci. 9:280. doi: 10.3389/fncel.2015.00280.
21. Rivera S., Khrestchaitsky M., Kaczmarek L., Rosenberg G., Jaworski D. M., 2010. Metzincin proteases and their inhibitors: foes and friends in nervous system physiology? J Neurosci, 30(46):15337–57. doi: 10.1523/jneurosci.3467-10.2010.
22. Vandooren J., Van den Steen P. E., Opdenakker G., 2013. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol, 48(3):222–72. doi: 10.3109/10409238.2013.770819.
23. Ethel I. M., Ethel D. W., 2007. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res. 85(13):2913–2823. doi: 10.1002/jnr.21273.
24. Nagy V., Bozdagy O., Matynia A., Balcerzak M., Okulski P., Dzwonek J., Costa R. M., Silva A. J., Kaczmarek L., Huntley G., 2006. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci. 26(7):1923–34. doi: 10.1523/jneurosci.4359-05.2006.
25. Nagy V., Bozdagy O., Huntley W. H., 2007. The extracellular protease matrix metalloproteinase-9 is required by inhibitory avoidance learning and required for long term memory. Learn Mem. 14(10):655–64. doi: 10.1101/lm.678307.
26. Bozdagi O., Nagy V., Kwei K. T., Huntley G. W., 2007. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol. 98(1):334–44. doi: 10.1152/jn.00202.2007.
27. Okulski P., Jay T. M., Jaworski J., Duniec K., Dzwonek K., Dzwonek J., Konopacki F. A., Wilczynski G. M., Sanchez-Capelo A., Mallet J, Kaczmarek L., 2007. TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry. 62(4):359–62. doi: 10.1016/j.biopsych.2006.09.012.
28. Rybakowski J. K., Skibińska M., Kapelski P., Kaczmarek L., Hauser J., 2009. Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr Res. 109(1–3):90–93. doi: 10.1016/j.schres.2009.02.005.
29. Bekinschtein P., Cammarota M., Medina J.H., 2014. BDNF and memory processing Neuropharmacology. Jan;76 Pt C:677–83. doi: 10.1016/j.neuropharm.2013.04.024.
30. Hariri A. R., Goldberg T. E., Mattay V. S., Kolachana B. S., Callicott J. H., Egan M. F., Weinberger D. R., 2003. BDNF val66met polymorphism affects human memory–related hippocampal activity and predicts memory performance. J Neurosci. 23(17):6690–6694. doi: 10.1523/jneurosci.23-17-06690.2003.
31. Leal G., Comprido D, Duarte C. B., 2014. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 76 Pt C:639–56. doi: 10.1016/j.neuropharm.2013.04.005.
32. Zagrebelsky M., Korte M., 2014. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 76:628–638, doi: 10.1016/j.neuropharm.2013.05.029.
33. Sodersten K., Palsson E., Ishima T., Funa K., Landen M., Hashimoto K., Agren H., 2014. Abnormality in serum levels of mature BDNF and its precursor proBDNF in mood stabilized patients with bipolar disorder: a study of two independent cohorts. J Affect Disord. 160:1–9. doi: 10.1016/j.jad.2014.01.009.
34. Siuda J., Patalong-Ogiewa M., Żmuda W., Targosz-Gajniak M., Niewiadomska E., Matuszek I., Jędrzejowska-Szypułka H., Lewin-Kowalik J, Rudzińska-Bar M., 2017. Cognitive impairment and BDNF serum levels. Neurol Neurochir Pol. 51(1):24–32. doi: 10.1016/j.pjnns.2016.10.001.
35. Mizoguchi H., Nakade J., Tachibana M., Ibi D., Someya E., Koike H., Kamei H., Nabeshima T., Itohara S., Takuma K., Sawada M., Sato J., Yamada K., 2011. Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci. 31(36):12963–71. doi: 10.1523/jneurosci.3118-11.2011.
36. Hashimoto K., 2010. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci. 64(4):341–57. doi: 10.1111/j.1440-1819.2010.02113.x.
37. Weichbold V., Tsiakpini L., Coninx F., D'Haese P., 2005. Development of a parent questionnaire for assessment of auditory behaviour of infants up to two years of age. Laryngorhinootologie, 84(5):328–334. doi: 10.1055/s-2004-826232.
38. Obrycka A., Padilla Garcia J. P., Pankowska A., Lorens A., Skarżynski H., 2009. Production and evaluation of a Polish version of the LittlEars questionnaire for the assessment of auditory development in infants. Int J Pediatr Otorhinolaryngol. 73(7):1035–1042. doi: 10.1016/j.ijporl.2009.04.010.
39. Obrycka A., Lorens A., Padilla J. L., Piotrowska A., Skarżyński H., 2017. Validation of the LittlEARS Auditory Questionnaire in cochlear implanted infants and toddlers. Int J Pediatr Otorhinolaryngol .93:107–116. doi: 10.1016/j.ijporl.2016.12.024.
40. Coninx F., Weichbold V., Tsiakpini L., Autrique E., Bescond G., Tamas L., Compernol A., Georgescu M., Koroleva I., Le Maner-Idrissi G., Liang W., Madell J., Miić B., Obrycka A., Pankowska A., Pascu A., Popescu R., Radulescu L., Reuhamaki T., Rouev P., Kabatova Z., Spitzer J., Thodi Ch., Varzic F., Vischer M., Wang L., Zavala JS., Brachmaier J., 2009. Validation of the LittlEARS Auditory Questionnaire in children with normal hearing. Int J Pediatr Otorhinolaryngol, 73(12):1761–1768. doi: 10.1016/j.ijporl.2009.09.036.
41. Geal-Dor M., Jbarah R., Meilijson S., Adelman C., Levi H.., 2011. The Hebrew and the Arabic version of the LittlEARS Auditory Questionnaire for the assessment of auditory development: Results in normal hearing children and children with cochlear implants. Int J Pediatr Otorhinolaryngol. 75(10):1327–1332. doi: 10.1016/j.ijporl.2011.07.030.
42. Wanga L., Sun X., Liang W., Chen J., Zheng W., 2013. Validation of the Mandarin version of the LittlEARS Auditory Questionnaire. Int J Pediatr Otorhinolaryngol. 77(8):1350–1354. doi: 10.1016/j.ijporl.2013.05.033.
43. García Negro A. S., Padilla García J. L., Sainz Quevedo M., 2016. Production and evaluation of a Spanish version of the LittlEARS Auditory Questionnaire for the assessment of auditory development in children. Int J Pediatr Otorhinolaryngol. 83:99–103. doi: 10.1016/j.ijporl.2016.01.021.
44. Matusiak M., Oziębło D., Obrycka A., Ołdak M., Kaczmarek L., Skarżyński P, Skarżyński H., 2021. Functional polymorphism of MMP9 and BDNF as a potential biomarker of auditory plasticity in prelingual deafness treatment with cochlear implantation: a retrospective cohort analysis. Trends Hear. Jan-Dec 2021;25:23312165211002140. doi: 10.1177/23312165211002140.
45. Lepeta K., Purzycka K. J., Pachulska-Wieczorek K., Mitjans M., Begemann M., Vafadari B., Bijata K., Adamiak R. W., Ehrenreich H., Dziembowska M., Kaczmarek L., 2017. A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms. EMBO Mol Med., 9(8):1100–1116. doi: 10.15252/emmm.201707723.
46. Ali F. T., Abd El-Azeem E. M., Hamed M. A., Ali M. A. M., Abd Al-Kader N. M., Hassan E. A., 2017. Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: pathophysiological and phenotypic implications. Schizophr Res. 188:98–109. doi: 10.1016/j.schres.2017.01.016.
47. Xia Q.-R., Zhang C., Liang J., Xu Y.-Y., 2019. The association of functional polymorphism of matrix metalloproteinase-9 gene (rs3918242) with schizophrenia: a meta-analysis. Int J Psychiatry Clin Pract. 23(3):207–214. doi: 10.1080/13651501.2019.1581895.
48. Samochowiec A., Grzywacz A., Kaczmarek L., Bienkowski P., Samochowiec J., Mierzejewski P., Preuss U. W., Grochans E., Ciechanowicz A., 2010. Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene in alcohol dependence: family case control study. Brain Res. 1327: 103–106. doi: 10.1016/j.brainres.2010.02.072
49. Kudo N., Yamamori H., Ishima T., Nemoto K., Yasuda Y., Fujimoto M., Azechi H., Niitsu T., Numata S., Ikeda M., Iyo M., Ohmori T., Fukunaga M., Watanabe Y., Hashimoto K., Hasimoto R., 2020. Plasma levels of matrix metalloproteinase-9 (MMP-9) are associated with cognitive performance in patients with schizophrenia. Neuropsychopharmacol Rep. Jun;40(2):150-156. doi: 10.1002/npr2.12098.
50. Michaluk P., Wawrzyniak M., A lot P., Szczot M., Wyrembek P., Mercik K., Medvedev N., Wilczek E., De Roo M., Zuschratter W., Muller D., Wilczynski G. M., Mozrzymas J. W., Stewart M. G., Kaczmarek L., Wlodarczyk J., 2011. Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci. Oct 1;124(Pt 19):3369-80. doi: 10.1242/jcs.090852.
51. Knapska E., Lioudyno V., Kiryk A., Mikosz M., Górkiewicz T., Michaluk P., Gawlak M., Chaturvedi M., Mochol G., Balcerzyk M., Wojcik D. K., Wilczynski G. M., Kaczmarek L., 2013. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J Neurosci. 33(36): 14591–14600. doi: 10.1523/JNEUROSCI.5239-12.2013.
52. Keshri N., Nandeesha H., Rajappa M., Menon V., 2021. Matrix metalloproteinase-9 increases the risk of cognitive impairement in schizophrenia. Nord J Psychiatry. Feb;75(2):130-134. doi: 10.1080/08039488.2020.1808901.
53. Yamamori H., Hashimoro R., Ishima T., Kishi F., Yasuda Y., Ohi K., Fujimoto M., Umeda-Yanp S., Ito A., Hashimoto K., Takeda M., 2013. Plasma levels of matire brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine. Neurosci Lett Nov 27;556:37-41. doi: 10.1016/j.neulet.2013.09.059.
54. Bilousova T.V., Dansie L., Ngo M., Aye J., Charles J. R., Ethell D. W., Ethell I. M., 2009. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 46:94–102. doi: 10.1136/jmg.2008.061796.
55. Leigh M. J., Nguyen D. V., Mu Y., Winarni T. I., Schneider A., Chechi T., Polussa J., Dpucet P., Tassone F., Rivera S. M., Hessl D., Hagerman R. J., 2013. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with Fragile X Syndrome. J Dev Behav Pediatr. 34(3): 147–155. doi: 10.1097/DBP.0b013e318287cd17.
56. Schenider A., Leigh M. J., Adams P., Nanakul R., Chechi T., Olichney J., Hagerman R., Hessl D., 2013. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol. 27(10): 956–963. doi: 10.1177/0269881113494105.
57. Brunoni A. R., Lopes M., Fregni F., 2008. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. 11(8):1169–80. doi: 10.1017/S1461145708009309.
58. Yoshida T., Ishikawa M., Niitsu T., Nakazato M., Watanabe H., Shiraishi T., Shiina A., Hashimoto T., Kanahara N., Hasegawa T., Enohara M., Kimura T., Iyo M., Hashimoto K., 2012. Decreased serum level of mature Brain-Derived Neurotrophic Factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 7(8):e42676. doi: 10.1371/journal.pone.0042676.
59. Yoshimura R., Kishi T., Hori H., Atake K., Katsuki A., Nakano-Umene W., Ikenouchi-Sugita A., Uwata N., Nakamura J., 2014. Serum proBDNF/BDNF and response to fluvoxamine in drug naïve first-episode major depressive disorder patients. Ann Gen Psychiatry. 13:19. doi: 10.1186/1744-859X-13-19.
60. Glennon E., Svirsky M. A., Froemke R. C., 2020. Auditory cortical plasticity in cochlear implant users. Curr Opin Neurobiol. 60:108–114. doi: 10.1016/j.conb.2019.11.003.