1. Verbakel, S. K. et al. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 66, 157–186 (2018).
2. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science (80-. ). (2005) doi:10.1126/science.1109557.
3. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science (80-. ). (2005) doi:10.1126/science.1110189.
4. Lee, R., Wong, T. Y. & Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. (2015) doi:10.1186/s40662-015-0026-2.
5. Jarrett, S. G., Lewin, A. S. & Boulton, M. E. The importance of Mitochondria in age-related and inherited eye disorders. Ophthalmic Research (2010) doi:10.1159/000316480.
6. Yu-Wai-Man, P. & Newman, N. J. Inherited eye-related disorders due to mitochondrial dysfunction. Human Molecular Genetics (2017) doi:10.1093/hmg/ddx182.
7. Ferrington, D. A., Fisher, C. R. & Kowluru, R. A. Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends in Molecular Medicine (2020) doi:10.1016/j.molmed.2019.10.008.
8. Linsenmeier, R. A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J. Gen. Physiol. (1986) doi:10.1085/jgp.88.4.521.
9. Okawa, H., Sampath, A. P., Laughlin, S. B. & Fain, G. L. ATP Consumption by Mammalian Rod Photoreceptors in Darkness and in Light. Curr. Biol. (2008) doi:10.1016/j.cub.2008.10.029.
10. Kimble, E. A., Svoboda, R. A. & Ostroy, S. E. Oxygen consumption and ATP changes of the vertebrate photoreceptor. Exp. Eye Res. (1980) doi:10.1016/S0014-4835(80)80037-6.
11. Ames, A., Li, Y. Y., Heher, E. C. & Kimble, C. R. Energy metabolism of rabbit retina as related to function: High cost of Na+ transport. J. Neurosci. (1992) doi:10.1523/jneurosci.12-03-00840.1992.
12. Wang, L., Kondo, M. & Bill, A. Glucose metabolism in cat outer retina: Effects of light and hyperoxia. Investig. Ophthalmol. Vis. Sci. (1997).
13. Kooragayala, K. et al. Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria. Investig. Ophthalmol. Vis. Sci. (2015) doi:10.1167/iovs.15-17901.
14. Labbé, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annual Review of Cell and Developmental Biology (2014) doi:10.1146/annurev-cellbio-101011-155756.
15. Noell, W. K. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res. (1980) doi:10.1016/0042-6989(80)90055-3.
16. Wright, A. F., Chakarova, C. F., Abd El-Aziz, M. M. & Bhattacharya, S. S. Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait. Nature Reviews Genetics (2010) doi:10.1038/nrg2717.
17. Power, M. et al. Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP. Progress in Retinal and Eye Research (2020) doi:10.1016/j.preteyeres.2019.07.005.
18. Curcio, C. A., Millican, C. L., Allen, K. A. & Kalina, R. E. Aging of the human photoreceptor mosaic: Evidence for selective vulnerability of rods in central retina. Investig. Ophthalmol. Vis. Sci. (1993).
19. Otsuga, D. et al. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. (1998) doi:10.1083/jcb.143.2.333.
20. Zemirli, N., Morel, E. & Molino, D. Mitochondrial dynamics in basal and stressful conditions. International Journal of Molecular Sciences (2018) doi:10.3390/ijms19020564.
21. Chan, D. C. Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Cell (2006) doi:10.1016/j.cell.2006.06.010.
22. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annual Review of Biochemistry (2007) doi:10.1146/annurev.biochem.76.071905.090048.
23. Lackner, L. L. & Nunnari, J. M. The molecular mechanism and cellular functions of mitochondrial division. Biochimica et Biophysica Acta - Molecular Basis of Disease (2009) doi:10.1016/j.bbadis.2008.11.011.
24. Scott, I. & Youle, R. J. Mitochondrial fission and fusion. Essays Biochem. (2010) doi:10.1042/BSE0470085.
25. Eisner, V., Picard, M. & Hajnóczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nature Cell Biology (2018) doi:10.1038/s41556-018-0133-0.
26. Yu, S. B. & Pekkurnaz, G. Mechanisms Orchestrating Mitochondrial Dynamics for Energy Homeostasis. Journal of Molecular Biology (2018) doi:10.1016/j.jmb.2018.07.027.
27. Shutt, T. E. & McBride, H. M. Staying cool in difficult times: Mitochondrial dynamics, quality control and the stress response. Biochimica et Biophysica Acta - Molecular Cell Research (2013) doi:10.1016/j.bbamcr.2012.05.024.
28. Yang, J. et al. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol. (2002) doi:10.1083/jcb.200207153.
29. Yang, J. et al. The Ciliary Rootlet Maintains Long-Term Stability of Sensory Cilia. Mol. Cell. Biol. (2005) doi:10.1128/mcb.25.10.4129-4137.2005.
30. Murray, R. G., Jones, A. E. & Murray, A. Fine structure of photoreceptors in the owl monkey. Anat. Rec. (1973) doi:10.1002/ar.1091750404.
31. Wolfrum, U. Cytoskeletal elements in arthorpod sensilla and mammalian photoreceptors. Biol. Cell (1992) doi:10.1016/0248-4900(92)90441-3.
32. Kam, J. H. et al. Fundamental differences in patterns of retinal ageing between primates and mice. Sci. Rep. 9, (2019).
33. Walton, J. Lead aspartate, an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem. Off. J. Histochem. Soc. 27, 1337–1342 (1979).
34. Meschede, I. P. et al. Symmetric arrangement of mitochondria:Plasma membrane contacts between adjacent photoreceptor cells regulated by opa1. Proc. Natl. Acad. Sci. U. S. A. (2020) doi:10.1073/pnas.2000304117.
35. Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. (2010) doi:10.1083/jcb.201007152.
36. Smirnova, E., Griparic, L., Shurland, D. L. & Van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell (2001) doi:10.1091/mbc.12.8.2245.
37. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. (2005) doi:10.1083/jcb.200506078.
38. Gandre-Babbe, S. & Van Der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell (2008) doi:10.1091/mbc.E07-12-1287.
39. Helle, S. C. J. et al. Mechanical force induces mitochondrial fission. Elife (2017) doi:10.7554/eLife.30292.
40. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science (80-. ). (2011) doi:10.1126/science.1207385.
41. Doonan, F., Donovan, M. & Cotter, T. G. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J. Neurosci. (2003) doi:10.1523/jneurosci.23-13-05723.2003.
42. Giarmarco, M. M. et al. Daily mitochondrial dynamics in cone photoreceptors. Proc. Natl. Acad. Sci. (2020) doi:10.1073/pnas.2007827117.
43. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. (2012) doi:10.1016/j.cub.2011.11.057.
44. Sugiura, A., McLelland, G., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles. EMBO J. (2014) doi:10.15252/embj.201488104.
45. Neuspiel, M. et al. Cargo-Selected Transport from the Mitochondria to Peroxisomes Is Mediated by Vesicular Carriers. Curr. Biol. (2008) doi:10.1016/j.cub.2007.12.038.
46. Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A. & McBride, H. M. Reconstitution of Mitochondria Derived Vesicle Formation Demonstrates Selective Enrichment of Oxidized Cargo. PLoS One (2012) doi:10.1371/journal.pone.0052830.
47. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature (2015) doi:10.1038/nature14893.
48. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 Is a Mitochondrial Protein that Confers Selectivity during Mitophagy. Dev. Cell (2009) doi:10.1016/j.devcel.2009.06.014.
49. Kurihara, Y. & Kanki, T. Atg32 Confers Selective Mitochondrial Sequestration as a Cargo for Autophagy. in Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging (2014). doi:10.1016/B978-0-12-405528-5.00010-9.
50. Okano, K. et al. Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light-induced damage. J. Neurochem. (2012) doi:10.1111/j.1471-4159.2012.07647.x.
51. Cunea, A. & Jeffery, G. The ageing photoreceptor. Vis. Neurosci. (2007) doi:10.1017/S0952523807070204.
52. Bok, D. The retinal pigment epithelium: A versatile partner in vision. in Journal of Cell Science (1993). doi:10.1242/jcs.1993.supplement_17.27.
53. Crabb, J. W. The proteomics of drusen. Cold Spring Harb. Perspect. Med. (2014) doi:10.1101/cshperspect.a017194.
54. Wang, L. et al. Abundant lipid and protein components of drusen. PLoS One (2010) doi:10.1371/journal.pone.0010329.
55. Anderson, D. H. et al. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Progress in Retinal and Eye Research (2010) doi:10.1016/j.preteyeres.2009.11.003.
56. Hageman, G. S. et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Progress in Retinal and Eye Research (2001) doi:10.1016/S1350-9462(01)00010-6.
57. Kertesz, Z. et al. Characterization of binding at human β2-glycoprotein I to cardiolipin. Biochem. J. (1995) doi:10.1042/bj3100315.
58. Wang, L. et al. Lipoprotein particles of intraocular origin in human bruch membrane: An unusual lipid profile. Investig. Ophthalmol. Vis. Sci. (2009) doi:10.1167/iovs.08-2376.