1. Green DR, Oguin TH, Martinez J (2016) The clearance of dying cells: table for two. Cell Death Differ 23:915–926. https://doi.org/10.1038/cdd.2015.172
2. Vanden Berghe T Vanden, Vanlangenakker N, Parthoens E, et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930. https://doi.org/10.1038/cdd.2009.184
3. Boeltz S, Hagen M, Knopf J, et al (2019) Towards a pro-resolving concept in systemic lupus erythematosus. Semin. Immunopathol. 41:681–697
4. Nagata S (2018) Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol 36:489–517. https://doi.org/10.1146/annurev-immunol-042617-053010
5. Sachet M, Liang YY, Oehler R (2017) The immune response to secondary necrotic cells. Apoptosis 22:1189–1204. https://doi.org/10.1007/s10495-017-1413-z
6. Ding J, Wang K, Liu W, et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. https://doi.org/10.1038/nature18590
7. Kayagaki N, Stowe IB, Lee BL, et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. https://doi.org/10.1038/nature15541
8. Shi P, Tang A, Xian L, et al (2015) Loss of conserved Gsdma3 self-regulation causes autophagy and cell death. Biochem J 468:325–336. https://doi.org/10.1042/BJ20150204
9. Rogers C, Fernandes-Alnemri T, Mayes L, et al (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128. https://doi.org/10.1038/ncomms14128
10. Rogers C, Erkes DA, Nardone A, et al (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10:1689. https://doi.org/10.1038/s41467-019-09397-2
11. Hou J, Zhao R, Xia W, et al (2020) PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol 22:1264–1275. https://doi.org/10.1038/s41556-020-0575-z
12. Sollberger G, Choidas A, Burn GL, et al (2018) Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 3:1–12. https://doi.org/10.1126/sciimmunol.aar6689
13. Chen KW, Monteleone M, Boucher D, et al (2018) Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol 3:eaar6676. https://doi.org/10.1126/sciimmunol.aar6676
14. Shi J, Zhao Y, Wang K, et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514
15. He W, Wan H, Hu L, et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139
16. Op de Beeck K, Van Camp G, Thys S, et al (2011) The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet 19:965–973. https://doi.org/10.1038/ejhg.2011.63
17. Lee BL, Mirrashidi KM, Stowe IB, et al (2018) ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci Rep 8:3788. https://doi.org/10.1038/s41598-018-21998-3
18. Tixeira R, Shi B, Parkes MAF, et al (2018) Gasdermin E Does Not Limit Apoptotic Cell Disassembly by Promoting Early Onset of Secondary Necrosis in Jurkat T Cells and THP-1 Monocytes. Front Immunol 9:2842. https://doi.org/10.3389/fimmu.2018.02842
19. Liu Z, Wang C, Yang J, et al (2019) Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization. Immunity. https://doi.org/10.1016/J.IMMUNI.2019.04.017
20. Ruan J, Xia S, Liu X, et al (2018) Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557:62–67. https://doi.org/10.1038/s41586-018-0058-6
21. Sborgi L, Rühl S, Mulvihill E, et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35:1766–78. https://doi.org/10.15252/embj.201694696
22. Mulvihill E, Sborgi L, Mari SA, et al (2018) Mechanism of membrane pore formation by human gasdermin-D. EMBO J e98321. https://doi.org/10.15252/embj.201798321
23. Fraire JC, Houthaeve G, Liu J, et al (2020) Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis. J Control Release 319:262–275. https://doi.org/10.1016/j.jconrel.2019.12.050
24. Xiong R, Joris F, Liang S, et al (2016) Cytosolic Delivery of Nanolabels Prevents Their Asymmetric Inheritance and Enables Extended Quantitative in Vivo Cell Imaging. Nano Lett 16:5975–5986. https://doi.org/10.1021/acs.nanolett.6b01411
25. Xiong R, Raemdonck K, Peynshaert K, et al (2014) Comparison of gold nanoparticle mediated photoporation: Vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8:6288–6296. https://doi.org/10.1021/nn5017742
26. Raes L, Stremersch S, Fraire JC, et al (2020) Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. Nano-Micro Lett 12:1–17. https://doi.org/10.1007/s40820-020-00523-0
27. Ramon J, Xiong R, De Smedt SC, et al (2021) Vapor Nanobubble-Mediated Photoporation Constitutes a Versatile Intracellular Delivery Technology. Curr Opin Colloid Interface Sci 54:101453. https://doi.org/10.1016/j.cocis.2021.101453
28. Liu J, Xiong R, Brans T, et al (2018) Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light Sci Appl 7:2047–7538. https://doi.org/10.1038/s41377-018-0048-3
29. Wayteck L, Xiong R, Braeckmans K, et al (2017) Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J Control Release 267:154–162. https://doi.org/10.1016/j.jconrel.2017.08.002
30. Lukianova-Hleb E, Hu Y, Latterini L, et al (2010) Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4:2109–2123. https://doi.org/10.1021/nn1000222
31. Hodgkins A, Farne A, Perera S, et al (2015) WGE: a CRISPR database for genome engineering. Bioinformatics 31:3078–3080. https://doi.org/10.1093/bioinformatics/btv308
32. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168–e168. https://doi.org/10.1093/nar/gku936
33. De Groote P, Grootjans S, Lippens S, et al (2016) Generation of a new Gateway-compatible inducible lentiviral vector platform allowing easy derivation of co-transduced cells. Biotechniques 60:252–259. https://doi.org/10.2144/000114417
34. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J. 50:346–363
35. R Core Team (2020) R: A language and environment for statistical computing. In: R Found. Stat. Comput. https://www.r-project.org/. Accessed 10 Apr 2021
36. Vercammen D, Beyaert R, Denecker G, et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–85
37. Wang Y, Gao W, Shi X, et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103. https://doi.org/10.1038/nature22393
38. Lénárt P, Ellenberg J (2006) Monitoring the permeability of the nuclear envelope during the cell cycle. Methods 38:17–24. https://doi.org/10.1016/j.ymeth.2005.07.010
39. Raes L, Van Hecke C, Michiels J, et al (2019) Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. Crystals 9:411. https://doi.org/10.3390/cryst9080411
40. Galluzzi L, Kroemer G (2017) Secondary Necrosis: Accidental No More. Trends in Cancer 3:1–2. https://doi.org/10.1016/J.TRECAN.2016.12.001
41. Zhang Z, Zhang Y, Xia S, et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579:1–6. https://doi.org/10.1038/s41586-020-2071-9
42. Evavold CL, Ruan J, Tan Y, et al (2018) The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity 48:35-44.e6. https://doi.org/10.1016/J.IMMUNI.2017.11.013
43. Heilig R, Dick MS, Sborgi L, et al (2018) The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol 48:584–592. https://doi.org/10.1002/eji.201747404
44. Zhou B, Abbott DW (2021) Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep 35:108998. https://doi.org/10.1016/j.celrep.2021.108998
45. Kayagaki N, Kornfeld OS, Lee BL, et al (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 1–8. https://doi.org/10.1038/s41586-021-03218-7
46. Xia S, Zhang Z, Magupalli VG, et al (2021) Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. https://doi.org/10.1038/s41586-021-03478-3