Abdelnaby, A. E. (2018). Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences. *Journal of Earthquake Engineering, 22*(5), 902-920. doi: https://doi.org/10.1080/13632469.2016.1264328

Berry, M. P., Lehman, D. E., & Lowes, L. N. (2008). Lumped-plasticity models for performance simulation of bridge columns. *ACI Structural Journal, 105*(3), 270.

Bommer, J. J., Hancock, J., & Alarcón, J. E. (2006). Correlations between duration and number of effective cycles of earthquake ground motion. *Soil Dynamics and Earthquake Engineering, 26*(1), 1-13. doi: https://doi.org/10.1016/j.soildyn.2005.10.004

Bracci, J. M., Reinhorn, A. M., & Mander, J. B. (1995). Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system. *Structural Journal, 92*(5), 597-609.

Bray, J. D. (2007). Simplified seismic slope displacement procedures *Earthquake geotechnical engineering* (pp. 327-353): Springer.

Chakraborti, A., & Gupta, V. K. (2005). Scaling of strength reduction factors for degrading elasto-plastic oscillators. *Earthquake Engineering & Structural Dynamics, 34*(2), 189-206. doi: https://doi.org/10.1002/eqe.416

Green, R. A., & Terri, G. A. (2005). Number of equivalent cycles concept for liquefaction evaluations—Revisited. *Journal of Geotechnical and Geoenvironmental Engineering, 131*(4), 477-488. doi: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(477)

Han, R., Li, Y., & van de Lindt, J. (2015). Assessment of seismic performance of buildings with incorporation of aftershocks. *Journal of Performance of Constructed Facilities, 29*(3), 04014088. doi: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000596

Hancock, J., & Bommer, J. J. (2006). A state-of-knowledge review of the influence of strong-motion duration on structural damage. *Earthquake Spectra, 22*(3), 827-845. doi: https://doi.org/10.1193/1.2220576

Hossain, M. R., Ashraf, M., & Padgett, J. E. (2013). Risk-based seismic performance assessment of Yielding Shear Panel Device. *Engineering Structures, 56*, 1570-1579. doi: https://doi.org/10.1016/j.engstruct.2013.07.032

Hosseinpour, F., & Abdelnaby, A. (2017). Fragility curves for RC frames under multiple earthquakes. *Soil Dynamics and Earthquake Engineering, 98*, 222-234. doi: https://doi.org/10.1016/j.soildyn.2017.04.013

Imashi, N., & Massumi, A. (2011). A comparative study of the seismic provisions of Iranian seismic code (standard no. 2800) and international building code 2003.

Jeon, J.-S., Lowes, L. N., DesRoches, R., & Brilakis, I. (2015a). Fragility curves for non-ductile reinforced concrete frames that exhibit different component response mechanisms. *Engineering Structures, 85*, 127-143. doi: https://doi.org/10.1016/j.engstruct.2014.12.009

Jeon, J. S., DesRoches, R., Lowes, L. N., & Brilakis, I. (2015b). Framework of aftershock fragility assessment–case studies: older California reinforced concrete building frames. *Earthquake Engineering & Structural Dynamics, 44*(15), 2617-2636. doi: https://doi.org/10.1002/eqe.2599

Jeon, J., DesRoches, R., Brilakis, I., & Lowes, L. (2012). *Aftershock fragility curves for damaged non-ductile reinforced concrete buildings.* Paper presented at the 15th World Conference on Earthquake Engineering.

Kumar, M., Castro, J., Stafford, P., & Elghazouli, A. (2011). Influence of the mean period of ground motion on the inelastic dynamic response of single and multi degree of freedom systems. *Earthquake Engineering & Structural Dynamics, 40*(3), 237-256. doi: https://doi.org/10.1002/eqe.1013

Kumar, M., Stafford, P. J., & Elghazouli, A. Y. (2013). Influence of ground motion characteristics on drift demands in steel moment frames designed to Eurocode 8. *Engineering Structures, 52*, 502-517. doi: https://doi.org/10.1016/j.engstruct.2013.03.010

Massumi, A., Mahboubi, B., & Ameri, M. R. (2015). Seismic response of RC frame structures strengthened by reinforced masonry infill panels. *Earthquakes and Structures, 8*(6), 1435-1452. doi: http://dx.doi.org/10.12989/eas.2015.8.6.1435

Monavari, B., & Massumi, A. (2012). Estimating displacement demand in reinforced concrete frames using some failure criteria. *International Journal of Advanced Structural Engineering, 4*(1), 1-6. doi: https://doi.org/10.1186/2008-6695-4-4

Raghunandan, M., & Liel, A. B. (2013). Effect of ground motion duration on earthquake-induced structural collapse. *Structural Safety, 41*, 119-133. doi: https://doi.org/10.1016/j.strusafe.2012.12.002

Raghunandan, M., Liel, A. B., & Luco, N. (2015). Aftershock collapse vulnerability assessment of reinforced concrete frame structures. *Earthquake Engineering & Structural Dynamics, 44*(3), 419-439. doi: https://doi.org/10.1002/eqe.2478

Rathje, E. M., Abrahamson, N. A., & Bray, J. D. (1998). Simplified frequency content estimates of earthquake ground motions. *Journal of Geotechnical and Geoenvironmental Engineering, 124*(2), 150-159. doi: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(150)

Ruiz-García, J. (2012). Mainshock-aftershock ground motion features and their influence in building's seismic response. *Journal of Earthquake Engineering, 16*(5), 719-737. doi: https://doi.org/10.1080/13632469.2012.663154

Ruiz-García, J., & Miranda, E. (2004). Inelastic displacement ratios for design of structures on soft soils sites. *Journal of Structural Engineering, 130*(12), 2051-2061. doi: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2051)

Ryu, H., Luco, N., Uma, S., & Liel, A. (2011). *Developing fragilities for mainshock-damaged structures through incremental dynamic analysis.* Paper presented at the Ninth pacific conference on earthquake engineering, Auckland, New Zealand.

Song, R., Li, Y., & van de Lindt, J. W. (2014). Impact of earthquake ground motion characteristics on collapse risk of post-mainshock buildings considering aftershocks. *Engineering Structures, 81*, 349-361. doi: https://doi.org/10.1016/j.engstruct.2014.09.047

Trevlopoulos, K., & Guéguen, P. (2016). Period elongation-based framework for operative assessment of the variation of seismic vulnerability of reinforced concrete buildings during aftershock sequences. *Soil Dynamics and Earthquake Engineering, 84*, 224-237. doi: https://doi.org/10.1016/j.soildyn.2016.02.009

Uang, C.-M., & Maarouf, A. (1994). Deflection amplification factor for seismic design provisions. *Journal of Structural Engineering, 120*(8), 2423-2436. doi: https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2423)

Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. *Earthquake Engineering & Structural Dynamics, 31*(3), 491-514. doi: https://doi.org/10.1002/eqe.141

Vidal, F., Navarro, M., Aranda, C., & Enomoto, T. (2014). Changes in dynamic characteristics of Lorca RC buildings from pre-and post-earthquake ambient vibration data. *Bulletin of Earthquake Engineering, 12*(5), 2095-2110. doi: https://doi.org/10.1007/s10518-013-9489-5