1. Berdugo-Vega, G. et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nature communications 11, 135. (2020).
2. Scopa, C. et al. Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Abeta oligomers. Cell Death Differ 27, 934-948. (2020).
3. Winner, B. & Winkler, J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harbor perspectives in biology 7, a021287. (2015).
4. Gil-Mohapel, J., Simpson, J. M., Ghilan, M. & Christie, B. R. Neurogenesis in Huntington's disease: can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 1406, 84-105. (2011).
5. Luo, L. & O'Leary, D. D. Axon retraction and degeneration in development and disease. Annual review of neuroscience 28, 127-156. (2005).
6. Geraerts, M., Krylyshkina, O., Debyser, Z. & Baekelandt, V. Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 25, 263-270. (2007).
7. Jankovic, J. Parkinson's disease and movement disorders: moving forward. The Lancet. Neurology 7, 9-11. (2008).
8. Hwang, O. Role of oxidative stress in Parkinson's disease. Exp Neurobiol 22, 11-17. (2013).
9. Squadrito, G. L. et al. Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376, 333-337. (2000).
10. Tana, C., Ticinesi, A., Prati, B., Nouvenne, A. & Meschi, T. Uric Acid and Cognitive Function in Older Individuals. Nutrients 10. (2018).
11. Wen, M. et al. Serum uric acid levels in patients with Parkinson's disease: A meta-analysis. PloS one 12, e0173731. (2017).
12. Bakshi, R. et al. Urate mitigates oxidative stress and motor neuron toxicity of astrocytes derived from ALS-linked SOD1(G93A) mutant mice. Molecular and cellular neurosciences 92, 12-16. (2018).
13. Scheepers, L. et al. Urate and risk of Alzheimer's disease and vascular dementia: A population-based study. Alzheimers Dement 15, 754-763. (2019).
14. Auinger, P., Kieburtz, K. & McDermott, M. P. The relationship between uric acid levels and Huntington's disease progression. Movement disorders : official journal of the Movement Disorder Society 25, 224-228. (2010).
15. Li, X. et al. Effect of serum uric acid on cognition in patients with idiopathic REM sleep behavior disorder. Journal of neural transmission (Vienna, Austria : 1996) 125, 1805-1812. (2018).
16. Ya, B. L. et al. Uric Acid Protects against Focal Cerebral Ischemia/Reperfusion-Induced Oxidative Stress via Activating Nrf2 and Regulating Neurotrophic Factor Expression. Oxidative medicine and cellular longevity 2018, 6069150. (2018).
17. Beckervordersandforth, R. Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis. Brain plasticity (Amsterdam, Netherlands) 3, 73-87. (2017).
18. Zheng, H. et al. Mitochondrial oxidation of the carbohydrate fuel is required for neural precursor/stem cell function and postnatal cerebellar development. Sci Adv 4, eaat2681. (2018).
19. Khacho, M. et al. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program. Cell stem cell 19, 232-247. (2016).
20. Khacho, M. et al. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Human molecular genetics 26, 3327-3341. (2017).
21. Hollenbeck, P. J. & Saxton, W. M. The axonal transport of mitochondria. Journal of cell science 118, 5411-5419. (2005).
22. Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annual review of genetics 39, 503-536. (2005).
23. Beckervordersandforth, R. et al. Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron 93, 560-573.e566. (2017).
24. Khacho, M. & Slack, R. S. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Developmental dynamics : an official publication of the American Association of Anatomists 247, 47-53. (2018).
25. Arrázola, M. S. et al. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res 36, 257-267. (2019).
26. Flippo, K. H. & Strack, S. Mitochondrial dynamics in neuronal injury, development and plasticity. Journal of cell science 130, 671-681. (2017).
27. Kuhn, H. G., Eisch, A. J., Spalding, K. & Peterson, D. A. Detection and Phenotypic Characterization of Adult Neurogenesis. Cold Spring Harbor perspectives in biology 8, a025981. (2016).
28. Mishra, A., Singh, S., Tiwari, V., Parul & Shukla, S. Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/beta-catenin pathways in rat model of Parkinson's disease. Neurochem Int 122, 170-186. (2019).
29. Winner, B. et al. Role of alpha-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci 32, 16906-16916. (2012).
30. Winner, B. et al. Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63, 1155-1166. (2004).
31. Winner, B. et al. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29, 913-925. (2008).
32. Crews, L. et al. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28, 4250-4260. (2008).
33. Kohl, Z. et al. Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci 35, 10-19. (2012).
34. Valenti, D. et al. Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta Mol Basis Dis 1863, 3117-3127. (2017).
35. de Lau, L. M., Koudstaal, P. J., Hofman, A. & Breteler, M. M. Serum uric acid levels and the risk of Parkinson disease. Annals of neurology 58, 797-800. (2005).
36. Euser, S. M., Hofman, A., Westendorp, R. G. & Breteler, M. M. Serum uric acid and cognitive function and dementia. Brain : a journal of neurology 132, 377-382. (2009).
37. Huang, T. T., Hao, D. L., Wu, B. N., Mao, L. L. & Zhang, J. Uric acid demonstrates neuroprotective effect on Parkinson's disease mice through Nrf2-ARE signaling pathway. Biochemical and biophysical research communications 493, 1443-1449. (2017).
38. Ni, H. M., Williams, J. A. & Ding, W. X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4, 6-13. (2015).
39. Yuan, T. F., Gu, S., Shan, C., Marchado, S. & Arias-Carrion, O. Oxidative Stress and Adult Neurogenesis. Stem Cell Rev Rep 11, 706-709. (2015).
40. Kopin, I. J. MPTP: an industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson's disease. Environ Health Perspect 75, 45-51. (1987).
41. Banerjee, K. et al. Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson's disease. FEBS Lett 584, 1571-1576. (2010).
42. Melo, T. Q., Copray, S. & Ferrari, M. F. R. Alpha-Synuclein Toxicity on Protein Quality Control, Mitochondria and Endoplasmic Reticulum. Neurochem Res 43, 2212-2223. (2018).
43. Mishra, A. et al. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling. Neurochem Int 129, 104463. (2019).
44. Hoglinger, G. U. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature neuroscience 7, 726-735. (2004).
45. Winner, B. et al. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219, 543-552. (2009).
46. O'Sullivan, S. S. et al. The effect of drug treatment on neurogenesis in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 26, 45-50. (2011).
47. O'Reilly, E. J. et al. Plasma urate and Parkinson's disease in women. American journal of epidemiology 172, 666-670. (2010).
48. Na Kim, H. et al. Feasibility and Efficacy of Intra-Arterial Administration of Mesenchymal Stem Cells in an Animal Model of Double Toxin-Induced Multiple System Atrophy. Stem Cells Transl Med 6, 1424-1433. (2017).
49. Oh, S. H., Kim, H. N., Park, H. J., Shin, J. Y. & Lee, P. H. Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Neuronal Differentiation by Enhancing the Wnt Signaling Pathway in an Alzheimer's Disease Model. Cell Transplant 24, 1097-1109. (2015).
50. Kim, H. N., Shin, J. Y., Kim, D. Y., Lee, J. E. & Lee, P. H. Priming mesenchymal stem cells with uric acid enhances neuroprotective properties in parkinsonian models. J Tissue Eng 12, 20417314211004816. (2021).