1. Casler M. Switchgrass Breeding, Genetics, and Genomics. In: Monti A, editor. Switchgrass. Green Energy and Technology: Springer London; 2012. p. 29–53.
2. Kszos LA, Downing ME, Wright LL, Cushman JH, McLaughlin SB, Tolbert VR, et al. Bioenergy Feedstock Development Program Status Report. Technical Report. 2000.
3. Parrish DJ, Fike JH. The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences. 2005;24(5/6):423–59.
4. Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, et al. Switchgrass as a sustainable bioenergy crop. 1996:83.
5. Lowry DB, Behrman KD, Grabowski P, Morris GP, Kiniry JR, Juenger TE. Adaptations between ecotypes and along environmental gradients in Panicum virgatum. American Naturalist. 2014;183(5):682–92.
6. Barnett FL, Carver RF. Meiosis and Pollen Stainability in Switchgrass, Panicum virgatum L1. Crop Science. 1967;7(4):301–4.
7. Nielsen E. Analysis of variation in Panicum virgatum. . J Agric Res. 1944;69:327–53.
8. Zhang Y, Zalapa J, Jakubowski AR, Price DL, Acharya A, Wei Y, et al. Natural Hybrids and Gene Flow between Upland and Lowland Switchgrass. Crop Science. 2011(6).
9. Zhang Y, Zalapa JE, Jakubowski AR, Price DL, Acharya A, Wei Y, et al. Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica. 2011;139:933–48.
10. Martinez-Reyna JM, Vogel KP. Incompatibility systems in switchgrass2002.
11. Adhikari L, Anderson MP, Klatt A, Wu Y. Testing the Efficacy of a Polyester Bagging Method for Selfing Switchgrass. Bioenerg Res. 2015;8(1):380–7.
12. Dong H, Thames S, Liu L, Smith M, Yan L, Wu Y. QTL Mapping for Reproductive Maturity in Lowland Switchgrass Populations. Bioenerg Res. 2015;8(4):1925–37.
13. Liu L, Wu Y. Identification of a Selfing Compatible Genotype and Mode of Inheritance in Switchgrass. Bioenerg Res. 2012;5(3):662–8.
14. Li G, Serba DD, Saha MC, Bouton JH, Lanzatella CL, Tobias CM. Genetic Linkage Mapping and Transmission Ratio Distortion in a Three-Generation Four-Founder Population of Panicum virgatum (L. ). 2014. p. 913–23.
15. Missaoui AM, Paterson AH, Bouton JH. Investigation of genomic organization in switchgrass ( Panicum virgatum L. ) using DNA markers. Theoretical & Applied Genetics. 2005;110(8):1372–83.
16. Okada M, Lanzatella C, Saha MC, Bouton J, Wu RL, Tobias CM. Complete Switchgrass Genetic Maps Reveal Subgenome Collinearity, Preferential Pairing and Multilocus Interactions. Genetics 2010;185:745–60.
17. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, et al. Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol. PLoS Genet. 2013;9(1):e1003215.
18. Clyde L. Porter J. An Analysis of Variation Between Upland and Lowland Switchgrass, Panicum Virgatum L. , in Central Oklahoma. Ecology. 1966(6):980.
19. Missaoui A, Paterson A, Bouton J. Molecular markers for the classification of switchgrass (Panicum virgatum L. ) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genetic Resources and Crop Evolution. 2006;53:1291–302.
20. Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S. Chloroplast DNA and Nuclear DNA Content Variations among Cultivars of Switchgrass, Panicum virgatum L. 1996:1049.
21. Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD. Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theoretical and Applied Genetics. 2011(4):805.
22. Fei L, Alexander EL, Jeff G, Rob E, Jerome HC, Michael DC, et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics, Vol 9, Iss 1, p e1003215 (2013). (1):e1003215.
23. Acharya AR. Genetic diversity, population structure and association mapping of biofuel traits in southern switchgrass germplasm. [electronic resource]: 2014. ; 2014.
24. Bahri BA, Daverdin G, Xu X, Cheng J-F, Barry KW, Brummer EC, et al. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L. ). BMC Evolutionary Biology. 2018;18(1):91-.
25. Elshire RJ, Glaubitz JC, Qi S, Poland JA, Kawamoto K, Buckler ES, et al. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE. 2011;6(5):1–10.
26. Poland JA, Brown PJ, Sorrells ME, Jannink J-L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLOS ONE. 2012;7(2):e32253.
27. Russell J, Hackett C, Hedley P, Liu H, Milne L, Bayer M, et al. The use of genotyping by sequencing in blackcurrant ( Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Molecular Breeding. 2014;33(4):835–49.
28. Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994;137(4):1121–37.
29. Daverdin G, Bahri BA, Wu X, Serba DD, Tobias C, Saha MC, et al. Comparative Relationships and Chromosome Evolution in Switchgrass (Panicum virgatum) and Its Genomic Model, Foxtail Millet (Setaria italica). BioEnergy Research. 2015(1):137.
30. Berthouly-Salazar C, Mariac C, Couderc M, Pouzadoux J, Floc’h J-B, Vigouroux Y. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy.
31. Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, et al. Comparative Genomics in Switchgrass Using 61,585 High-Quality Expressed Sequence Tags. The Plant Genome Journal. 2008;1:111–24.
32. Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R. Exploring the switchgrass transcriptome using second-generation sequencing technology. PLoS ONE. 2012;7(3):e34225-e.
33. Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, Tobias C, et al. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Functional & Integrative Genomics. 2015;15(1):1–16.
34. Palmer NA, Saathoff AJ, Scully ED, Tobias CM, Twigg P, Madhavan S, et al. Seasonal below-ground metabolism in switchgrass. Plant Journal. 2017(6):1059.
35. Tornqvist C-E, Vaillancourt B, Kim J, Buell CR, Kaeppler SM, Casler MD. Transcriptional Analysis of Flowering Time in Switchgrass. BioEnergy Research. 2017(3):700.
36. Sharma MK, Sharma R, Peijian C, Jenkins J, Bartley LE, Qualls M, et al. A Genome-Wide Survey of Switchgrass Genome Structure and Organization. PLoS ONE. 2012;7(4):1–13.
37. Serba D, Wu L, Daverdin G, Bahri BA, Wang X, Kilian A, et al. Linkage Maps of Lowland and Upland Tetraploid Switchgrass Ecotypes. Bioenerg Res. 2013;6(3):953–65.
38. Liu L, Huang Y, Punnuri S, Samuels T, Wu Y, Mahalingam R. Development and integration of EST–SSR markers into an established linkage map in switchgrass. Molecular Breeding. 2013;32(4):923–31.
39. Liu L, Wu Y, Wang Y, Samuels T. A High-Density Simple Sequence Repeat-Based Genetic Linkage Map of Switchgrass. 2012. p. 357–70.
40. Fiedler JD, Lanzatella C, Okada M, Jenkins J, Schmutz J, Tobias CM. High-Density Single Nucleotide Polymorphism Linkage Maps of Lowland Switchgrass using Genotyping-by-Sequencing. The Plant Genome. 2015;8(2):1–14.
41. Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, et al. Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing. 2014. p. 1681–7.
42. Adhikari L, Lindstrom OM, Markham J, Missaoui AM. Dissecting Key Adaptation Traits in the Polyploid Perennial Medicago sativa Using GBS-SNP Mapping. Frontiers in Plant Science. 2018;9(934).
43. Faris JD, Laddomada B, Gill BS. Molecular Mapping of Segregation Distortion Loci in Aegilops tauschii. 1998:319.
44. Virk PS, Ford-Lloyd BV, Newbury HJ. Mapping AFLP markers associated with subspecific differentiation of Oryza sativa (rice) and an investigation of segregation distortion. Heredity. 1998;81(6):613–20.
45. Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B. AFLP–SSR maps of maize × teosinte and maize × maize: comparison of map length and segregation distortion. Plant Breeding. 2005;124(5):432–9.
46. Törjék O, Witucka-Wall H, Meyer RC, Korff Mv, Kusterer B, Rautengarten C, et al. Segregation distortion in Arabidopsis C24/Col–0 and Col–0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theoretical & Applied Genetics. 2006;113(8):1551–61.
47. Daniel Z, Yaakov T. Unequal Segregation of Nuclear Genes in Plants. Botanical Gazette. 1986(3):355.
48. Lyttle TW. Segregation Distorters. Annual Review of Genetics. 1991;25(1):511–81.
49. Mascarenhas JP. Pollen gene expression: molecular evidence. International Review Of Cytology. 1992;140:3–18.
50. Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A. 2000;97(13):7051–7.
51. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Annals of botany. 2012;109(1):19–45.
52. Razar RM, Missaoui A. Phenotyping Winter Dormancy in Switchgrass to Extend the Growing Season and Improve Biomass Yield. Journal of Sustainable Bioenergy Systems. 2018;Vol. 08No. 01:22.
53. Doyle J, Doyle J. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
54. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome research. 2012;22(5):939–46.
55. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences.
56. JGI Phytozome 12. 2017. https://phytozome. jgi. doe. gov/pz/portal. html. Accessed 1 July 2017.
57. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009;10(3):R25.
58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078–9.
59. Picard. 2017. http://broadinstitute. github. io/picard/. Accessed 1 August 2017.
60. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. 2010:1297.
61. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
62. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics. 2007;81(3):559–75.
63. Voorrips RE. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity. 2002;93(1):77–8.
64. Li X, Wei Y, Acharya A, Jiang Q, Kang J, Brummer EC. A Saturated Genetic Linkage Map of Autotetraploid Alfalfa (Medicago sativa L. ) Developed Using Genotyping-by-Sequencing Is Highly Syntenous with the Medicago truncatula Genome. G3: Genes|Genomes|Genetics. 2014;4(10):1971–9.
65. Gower J, Legendre P. Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification. 1986;3(1):5.