[1] Baran DA, Grines CL, Bailey S, Burkhoff D, Hall SA, Henry TD, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter Cardiovasc Interv 2019:1–9. doi:10.1002/ccd.28329.
[2] Shpektor A. Cardiogenic shock: The role of inflammation. Acute Card Care 2010;12:115–8. doi:10.3109/17482941.2010.523705.
[3] Basir MB, Schreiber T, Dixon S, Alaswad K, Patel K, Almany S, et al. Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: The Detroit cardiogenic shock initiative. Catheter Cardiovasc Interv 2018;91:454–61. doi:10.1002/ccd.27427.
[4] Burrell AJC, Bennett V, Serra AL, Pellegrino VA, Romero L, Fan E, et al. Venoarterial extracorporeal membrane oxygenation: A systematic review of selection criteria, outcome measures and definitions of complications. J Crit Care 2019;53:32–7. doi:10.1016/j.jcrc.2019.05.011.
[5] Song J, Kim M, Yun S, Choo J, Song J, Song H, et al. Long-term outcomes of percutaneous mitral balloon valvuloplasty versus open cardiac surgery. J Thorac Cardiovasc Surg 2000;139:103–10. doi:10.1016/j.jtcvs.2009.04.022.
[6] Thiele H, Ohman EM, Waha-thiele S De, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J 2019:1–15. doi:10.1093/eurheartj/ehz500.
[7] Worku B, Khin S, Gaudino M, Avgerinos D, Gambardella I, D’Ayala M, et al. A Simple Scoring System to Predict Survival after Venoarterial Extracorporeal Membrane Oxygenation. J Extra Corpor Technol 2019;51:133–9.
[8] Fuernau G, Desch S, de Waha-Thiele S, Eitel I, Neumann FJ, Hennersdorf M, et al. Arterial Lactate in Cardiogenic Shock: Prognostic Value of Clearance Versus Single Values. JACC Cardiovasc Interv 2020;13:2208–16. doi:10.1016/j.jcin.2020.06.037.
[9] Yeh YC, Lee CT, Wang CH, Tu YK, Lai CH, Wang YC, et al. Investigation of microcirculation in patients with venoarterial extracorporeal membrane oxygenation life support. Crit Care 2018;22:1–9. doi:10.1186/s13054-018-2081-2.
[10] Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality among Patients with Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA - J Am Med Assoc 2019;321:654–64. doi:10.1001/jama.2019.0071.
[11] Rigamonti F, Montecucco F, Boroli F, Rey F, Gencer B, Cikirikcioglu M, et al. The peak of blood lactate during the first 24 h predicts mortality in acute coronary syndrome patients under extracorporeal membrane oxygenation. Int J Cardiol 2016;221:741–5. doi:10.1016/j.ijcard.2016.07.065.
[12] Combes A, Price S, Slutsky AS, Brodie D. Temporary circulatory support for cardiogenic shock. Lancet 2020;396:199–212. doi:10.1016/S0140-6736(20)31047-3.
[13] Vincent J-L, De Backer D. Circulatory Shock. N Engl J Med 2013;369:1726–34. doi:10.1056/NEJMra1208943.
[14] Slottosch I, Liakopoulos O, Kuhn E, Scherner M, Deppe AC, Sabashnikov A, et al. Lactate and lactate clearance as valuable tool to evaluate ECMO therapy in cardiogenic shock. J Crit Care 2017;42:35–41. doi:10.1016/j.jcrc.2017.06.022.
[15] Gaudard P, Mourad M, Eliet J, Zeroual N, Culas G, Rouvière P, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care 2015;19:363. doi:10.1186/s13054-015-1073-8.
[16] Jensen PB, Kann SH, Veien KT, Møller-Helgestad OK, Dahl JS, Rud CS, et al. Single-centre experience with the Impella CP, 5.0 and RP in 109 consecutive patients with profound cardiogenic shock. Eur Hear J Acute Cardiovasc Care 2018;7:53–61. doi:10.1177/2048872617743194.
[17] Mungan I, Kazancl D, Bektaş Ş, Ademoglu D, Turan S. Does lactate clearance prognosticates outcomes in ECMO therapy: A retrospective observational study. BMC Anesthesiol 2018;18:1–8. doi:10.1186/s12871-018-0618-1.
[18] ELSO. General Guidelines for all ECLS Cases. Extracorpor Life Support Organ 2017:1–26.
[19] Schmidt M, Burrell A, Roberts L, Bailey M, Sheldrake J, Rycus PT, et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J 2015;36:2246–56. doi:10.1093/eurheartj/ehv194.
[20] Muller G, Flecher E, Lebreton G, Luyt C-E, Trouillet J-L, Bréchot N, et al. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med 2016;42:370–8. doi:10.1007/s00134-016-4223-9.
[21] Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial Evaluation of the SOFA Score to Predict Outcome in Critically Ill Patients. JAMA 2001;286:1754. doi:10.1001/jama.286.14.1754.
[22] Moreno RP, Metnitz PGH, Almeida E, Jordan B, Bauer P, Campos RA, et al. SAPS 3--From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med 2005;31:1345–55. doi:10.1007/s00134-005-2763-5.
[23] Frydland M, Møller JE, Wiberg S, Lindholm MG, Hansen R, Henriques JPS, et al. Lactate is a Prognostic Factor in Patients Admitted With Suspected ST-Elevation Myocardial Infarction. Shock 2019;51:321–7. doi:10.1097/SHK.0000000000001191.
[24] Li C-L, Wang H, Jia M, Ma N, Meng X, Hou X-T. The early dynamic behavior of lactate is linked to mortality in postcardiotomy patients with extracorporeal membrane oxygenation support: A retrospective observational study. J Thorac Cardiovasc Surg 2015;149:1445–50. doi:10.1016/j.jtcvs.2014.11.052.
[25] Masyuk M, Abel P, Hug M, Wernly B, Haneya A, Sack S, et al. Real-world clinical experience with the percutaneous extracorporeal life support system: Results from the German Lifebridge ® Registry. Clin Res Cardiol 2019. doi:10.1007/s00392-019-01482-2.
[26] Yang L, Fan Y, Lin R, He W. Blood Lactate as a Reliable Marker for Mortality of Pediatric Refractory Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation. Pediatr Cardiol 2019;40:602–9. doi:10.1007/s00246-018-2033-2.
[27] Fuernau G. Lactate and other biomarkers as treatment target in cardiogenic shock. Curr Opin Crit Care 2019;25:403–9. doi:10.1097/MCC.0000000000000628.
[28] Harig F, Hohenstein B, Von Der Emde J, Weyand M. Modulating IL-6 and IL-10 levels by pharmacologic strategies and the impact of different extracorporeal circulation parameters during cardiac surgery. Shock 2001;16:33–8. doi:10.1097/00024382-200116001-00007.
[29] Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020;11. doi:10.3389/fimmu.2020.01708.
[30] Lauten A, Engström AE, Jung C, Empen K, Erne P, Cook S, et al. Percutaneous left-ventricular support with the impella-2.5-assist device in acute cardiogenic shock results of the impella-EUROSHOCK-Registry. Circ Hear Fail 2013;6:23–30. doi:10.1161/CIRCHEARTFAILURE.112.967224.
[31] Alushi B, Douedari A, Froehlig G, Knie W, Wurster TH, Leistner DM, et al. Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Open Hear 2019;6:1–9. doi:10.1136/openhrt-2018-000987.
[32] Chang C-H, Chen H-C, Caffrey JL, Hsu J, Lin J-W, Lai M-S, et al. Survival Analysis After Extracorporeal Membrane Oxygenation in Critically Ill Adults. Circulation 2016;133:2423–33. doi:10.1161/CIRCULATIONAHA.115.019143.
[33] Basir MB, Kapur NK, Patel K, Salam MA, Schreiber T, Kaki A, et al. Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv 2019:1–11. doi:10.1002/ccd.28307.
[34] Fux T, Holm M, Corbascio M, Lund LH, van der Linden J. Venoarterial extracorporeal membrane oxygenation for postcardiotomy shock: Risk factors for mortality. J Thorac Cardiovasc Surg 2018;156:1894-1902.e3. doi:10.1016/j.jtcvs.2018.05.061.
[35] Maini B, Gregory D, Scotti DJ, Buyantseva L. Percutaneous cardiac assist devices compared with surgical hemodynamic support alternatives. Catheter Cardiovasc Interv 2014;83:E183–92. doi:10.1002/ccd.25247.