Inhibiting DDX3X Triggers Tumor-Intrinsic Type I Interferon Response and Enhances Anti-Tumor Immunity
Accumulating evidence has shown that cellular double-stranded RNAs (dsRNAs) induce antiviral innate immune responses in human normal and malignant cancer cells. However, it is not fully understood how endogenous ‘self’ dsRNA homeostasis is regulated in the cell. Here, we show that an RNA-binding protein, DEAD-box RNA helicase 3X (DDX3X), prevents the aberrant accumulation of cellular dsRNAs. Loss of DDX3X induces dsRNA sensor-mediated type I interferon signaling and innate immune response in breast cancer cells due to abnormal cytoplasmic accumulation of dsRNAs. Dual depletion of DDX3X and a dsRNA-editing protein, ADAR1 synergistically activates the cytosolic dsRNA pathway in the breast cancer cells. Moreover, inhibiting DDX3X enhances the antitumor activity by increasing tumor intrinsic-type I interferon response, antigen presentation, and tumor-infiltration of cytotoxic T cells as well as dendritic cells in breast tumors, which may lead to the development of breast cancer therapy by targeting DDX3X in combination with immune checkpoint blockade.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.
This is a list of supplementary files associated with this preprint. Click to download.
Extended Figures, Extended Figure legend, Supplementary info
Extended Figures, Extended Figure legend, Supplementary info
Table S1
Table S1
Table S2
Table S2
Posted 24 Sep, 2020
Inhibiting DDX3X Triggers Tumor-Intrinsic Type I Interferon Response and Enhances Anti-Tumor Immunity
Posted 24 Sep, 2020
Accumulating evidence has shown that cellular double-stranded RNAs (dsRNAs) induce antiviral innate immune responses in human normal and malignant cancer cells. However, it is not fully understood how endogenous ‘self’ dsRNA homeostasis is regulated in the cell. Here, we show that an RNA-binding protein, DEAD-box RNA helicase 3X (DDX3X), prevents the aberrant accumulation of cellular dsRNAs. Loss of DDX3X induces dsRNA sensor-mediated type I interferon signaling and innate immune response in breast cancer cells due to abnormal cytoplasmic accumulation of dsRNAs. Dual depletion of DDX3X and a dsRNA-editing protein, ADAR1 synergistically activates the cytosolic dsRNA pathway in the breast cancer cells. Moreover, inhibiting DDX3X enhances the antitumor activity by increasing tumor intrinsic-type I interferon response, antigen presentation, and tumor-infiltration of cytotoxic T cells as well as dendritic cells in breast tumors, which may lead to the development of breast cancer therapy by targeting DDX3X in combination with immune checkpoint blockade.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.