Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871 – 2011 from the Twentieth Century Reanalysis dataset.
Significant regional differences are seen on seasonal to decadal timescales. The ocean acts to reduce the seasonal jet latitude range from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strongest. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and summer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7ms -1 ), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed.
Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscillation which explains 50% of the winter variance in jet latitude since 1940.
Northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and America) on seasonal to decadal timescales, indicating different mechanisms are influencing the jet latitude and speed. It is important that the differing regional trends and mechanisms are incorporated into climate models and predictions.