1. IEA. (2020) Coal 2020: Analysis and forecast to 2025 International Energy Agency Report.
2. Duzyol, S. and Sensogut, C. (2018) Investigation of the Thermal Improvement and the Kinetic Analysis of the Enriched Coal. J. Combust. 2018, 1–10.
3. Zhao, Y., Yang, X., Luo, Z., Duan, C. and Song, S. (2014) Progress in developments of dry coal beneficiation. Int. J. Coal Sci. Technol. 1, 103–112.
4. Umar, D. . and Daulay, B. (2011) Improvement of low rank coal properties by various upgrading processes. Indones. Min. J. 14, 17–29.
5. Lingam, R. K., Suresh, A., Dash, P. S., Kumar, S. and Ray, T. (2016) Upgrading Coal Washery Rejects Through Caustic- acid Leaching Upgrading Coal Washery Rejects Through Caustic-acid Leaching. Miner. Process. Extr. Metall. Rev., Taylor & Francis 37, 69–72.
6. Gillenwater, L. E. and Gillenwater, B. L. E. (1951) Coal washery wastes in West Virginia. Sewage Ind. Waste. 23, 869–874.
7. Chugh, Y. P. and Behum, P. T. (2014) Coal waste management practices in the USA : an overview. Int. J. Coal Sci. Technol. 1, 163–176.
8. Behum, P. T., Chugh, Y. P. and Lefticariu, L. (2018) Management of coal processing wastes : studies on an alternate technology for control of sulfate and chloride discharge. Int. J. Coal Sci. Technol., China Coal Society 5, 54–63.
9. MoEF. (2010) Environmental Impact Assessment Guidance Manual for Coal Washeries, Ministry of Environment and Forests, Govt of India.
10. Yu, Y., Li, Z., Zhang, N. and Qu, J. (2020) Deep recovery study for coking coal washery rejects using a comprehensive process. Energy Sources, Part A Recover. Util. Environ. Eff., Taylor & Francis 1–13.
11. Opara, a., Adams, D. J., Free, M. L., McLennan, J. and Hamilton, J. (2012) Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. Int. J. Coal Geol. 96–97, 1–8.
12. Sekhohola, L. M., Igbinigie, E. E. and Cowan, A. K. (2013) Biological degradation and solubilisation of coal. Biodegradation 24, 305–18.
13. Manoj, B. (2013) Bio-demineralization of Indian Bituminous Coal by Aspergillus niger and characterization of the products 8, 49–54.
14. Silva-Stenico, M. E., Vengadajellum, C. J., Janjua, H. A., Harrison, S. T. L., Burton, S. G. and Cowan, D. A. (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J. Ind. Microbiol. Biotechnol. 34, 625–31.
15. Denizli, A., Sakintuna, B., Taralp, A. and Yu, Y. (2003) Bio-Liquefaction / Solubilization of Low-Rank Turkish Lignites and Characterization of the Products. Energy and Fuels 17, 1068–1074.
16. Kang, H., Liu, X., Zhang, Y. and Zhao, S. (2021) Environmental Effects Bacteria solubilization of shenmu lignite : influence of surfactants and characterization of the biosolubilization products. Energy Sources, Part A Recover. Util. Environ. Eff., Taylor & Francis 43, 1162–1180.
17. R. C. Tripathi, V. K. Jain, P. S. M. T., Tripathi, R., Jain, V. and Tripathi, P. (2009) Fungal Biosolubilization of Neyveli Lignite into Humic Acid. Energy Sources, Part A Recover. Util. Environ. Eff. 32, 72–82.
18. Kwiatos, N., Krzepkowska, M. J., Strzelecki, B. and Bielecki, S. (2018) Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase. AMB Express, Springer Berlin Heidelberg 8, 1–9.
19. Crawford, D. L. and Nielsen, E. P. (1995) Biotransformation of coal substructure model compounds by microbial enzymes. Appl. Biochem. Biotechnol. 54.
20. Strapoc, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A. V, Wawrik, B., Turich, C. and Ashby, M. (2011) Biogeochemistry of Microbial Coal-Bed Methane. Annu. Rev. Earth Planet. Sci. 39, 617–56.
21. Su, X., Zhao, W. and Xia, D. (2018) The diversity of hydrogen ‑ producing bacteria and methanogens within an in situ coal seam. Biotechnol. Biofuels, BioMed Central 11, 1–18.
22. Gupta, P. and Gupta, A. (2014) Biogas production from coal via anaerobic fermentation. Fuel, Elsevier Ltd 118, 238–242.
23. Gupta, A. and Birendra, K. (2000) Biogasification of coal using different sources of micro-organisms. Fuel 79, 103–105.
24. Pamidipati, S. and Ahmed, A. (2017) Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta. Appl. Biochem. Biotechnol. 181, 1561–1572.
25. Pamidipati, S. and Ahmed, A. (2020) A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiol. (Praha)., Folia Microbiologica 65, 431–437.
26. Vogel, H. J. (1964) Distribution of Lysine Pathways Among Fungi: Evolutionary Implications. Am. Nat. XCVIII, 435–446.
27. Lowry, O, H., Rosebrough, N, J., Randall, R. J. and Lewis, A. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.
28. Baresi, L., Mah, R. A., Ward, D. M. and Kaplan, I. R. (1978) Methanogenesis from Acetate : Enrichment Studies. App 36, 186–197.
29. Buchauer, K. (1998) A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment processes. WAter SA 24, 49–56.
30. Drosg, B. (2013) Process monitoring in biogas plants, IEA Bioenergy.
31. Toshiaki Kabe, Atsushi Ishihara, Eika Weihua Qian, I Putu Sutrisna, Y. K. (2004) Microbial Depolymerization of Coal. In Studies in Surface Science and Catalysis, pp 303–314, Elsevier.
32. Srinivasan, C., Souza, T. M. D. and Boominathan, K. (1995) Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61, 4274–4277.
33. Smoleňová, E., Pokorný, R., Kaliňák, M., Liptaj, T., Šimkovič, M. and Varečka, Ľ. (2020) Degradation of low-rank coal excavated from coal-mine Záhorie by filamentous fungi 13, 14–22.
34. Approach, A. B. (2013) Structural and Phylogenetic Analysis of Laccases from Trichoderma : A Bioinformatic Approach 8.
35. Strzelecki, B. and Kwiatos, N. Effect of coal pretreatment on brown coal biosolubilisation by Fusarium oxysporum 1101.
36. Webb, H. K., Arnott, J., Crawford, R. J. and Ivanova, E. P. (2013) Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers (Basel). 1–18.
37. Wang, B., Tai, C., Wu, L., Chen, L., Liu, J., Hu, B. and Song, D. (2017) Methane production from lignite through the combined effects of exogenous aerobic and anaerobic micro fl ora. Int. J. Coal Geol. 173, 84–93.