1. Miller, J.E., et al., Implications of immune dysfunction on endometriosis associated infertility. Oncotarget, 2017. 8(4): p. 7138-7147.
2. Culley, L., et al., The social and psychological impact of endometriosis on women's lives: a critical narrative review. Hum Reprod Update, 2013. 19(6): p. 625-39.
3. Cramer, D.W. and S.A. Missmer, The epidemiology of endometriosis. Ann N Y Acad Sci, 2002. 955: p. 11-22; discussion 34-6, 396-406.
4. Sasson, I.E. and H.S. Taylor, Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci, 2008. 1127: p. 106-15.
5. Filippi, I., et al., Different Expression of Hypoxic and Angiogenic Factors in Human Endometriotic Lesions. Reprod Sci, 2016. 23(4): p. 492-7.
6. Guo, S.W., Y. Du, and X. Liu, Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation. Reprod Sci, 2016. 23(8): p. 1044-52.
7. Rocha, A.L., F.M. Reis, and R.N. Taylor, Angiogenesis and endometriosis. Obstet Gynecol Int, 2013. 2013: p. 859619.
8. Gazvani, R. and A. Templeton, Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction, 2002. 123(2): p. 217-26.
9. Laschke, M.W. and M.D. Menger, In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Hum Reprod Update, 2007. 13(4): p. 331-42.
10. Ahn, S.H., et al., IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J Immunol, 2015. 195(6): p. 2591-600.
11. Khalaj, K., et al., A balancing act: RNA binding protein HuR/TTP axis in endometriosis patients. Sci Rep, 2017. 7(1): p. 5883.
12. Ge, R., et al., Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers? Cancer Microenviron, 2012. 5(3): p. 323-32.
13. Zhu, Q., et al., Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip, 2018. 18(12): p. 1690-1703.
14. Azmi, A.S., B. Bao, and F.H. Sarkar, Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev, 2013. 32(3-4): p. 623-42.
15. De Toro, J., et al., Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol, 2015. 6: p. 203.
16. Zhang, A., et al., Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-kappaB signaling pathway. Int J Mol Med, 2019. 43(1): p. 358-370.
17. Wu, D., et al., Exosomal miR-214 from endometrial stromal cells inhibits endometriosis fibrosis. Mol Hum Reprod, 2018. 24(7): p. 357-365.
18. Harp, D., et al., Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro. Cell Tissue Res, 2016. 365(1): p. 187-96.
19. Lasser, C., M. Eldh, and J. Lotvall, Isolation and characterization of RNA-containing exosomes. J Vis Exp, 2012(59): p. e3037.
20. Gotz, S., et al., High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res, 2008. 36(10): p. 3420-35.
21. Sanchez, A.M., et al., Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton. Mol Endocrinol, 2009. 23(8): p. 1193-202.
22. Othman, E.R., et al., Markers of Local and Systemic Estrogen Metabolism in Endometriosis. Reprod Sci, 2020.
23. Simpson, J.L., et al., Genetics of endometriosis. Obstet Gynecol Clin North Am, 2003. 30(1): p. 21-40, vii.
24. Sun, H., et al., Eutopic stromal cells of endometriosis promote neuroangiogenesis via exosome pathwaydagger. Biol Reprod, 2019. 100(3): p. 649-659.
25. Vlassov, A.V., et al., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta, 2012. 1820(7): p. 940-8.
26. Burns, G., et al., Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One, 2014. 9(3): p. e90913.
27. Ouattara, L.A., S.M. Anderson, and G.F. Doncel, Seminal exosomes and HIV-1 transmission. Andrologia, 2018. 50(11): p. e13220.
28. Liu, H., et al., GLI1 is increased in ovarian endometriosis and regulates migration, invasion and proliferation of human endometrial stromal cells in endometriosis. Ann Transl Med, 2019. 7(22): p. 663.
29. Li, L., et al., Herbacetin suppressed MMP9 mediated angiogenesis of malignant melanoma through blocking EGFR-ERK/AKT signaling pathway. Biochimie, 2019. 162: p. 198-207.
30. Hernandez, P., et al., Severe Burn-Induced Inflammation and Remodeling of Achilles Tendon in a Rat Model. Shock, 2018. 50(3): p. 346-350.
31. Ivetic, A. and A.J. Ridley, Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology, 2004. 112(2): p. 165-76.
32. Polesello, C. and F. Payre, Small is beautiful: what flies tell us about ERM protein function in development. Trends Cell Biol, 2004. 14(6): p. 294-302.
33. Chen, Z., et al., Ovarian epithelial carcinoma tyrosine phosphorylation, cell proliferation, and ezrin translocation are stimulated by interleukin 1alpha and epidermal growth factor. Cancer, 2001. 92(12): p. 3068-75.
34. Mhawech-Fauceglia, P., et al., Claudin7 and moesin in endometrial Adenocarcinoma; a retrospective study of 265 patients. BMC Res Notes, 2012. 5: p. 65.
35. Bedir, R., et al., The role of the adhesion molecule Nectin-4 in the pathogenesis of endometriosis. Clin Exp Obstet Gynecol, 2016. 43(3): p. 463-6.
36. Liu, D., et al., Increased expression of epithelial cell adhesion molecule and its possible role in epithelial-mesenchymal transition in endometriosis. J Obstet Gynaecol Res, 2020. 46(10): p. 2066-2075.
37. Lee, Y., et al., Correlation of preoperative biomarkers with severity of adhesion in endometriosis. J Gynecol Obstet Hum Reprod, 2020. 49(1): p. 101637.
38. Back, M., D.F. Ketelhuth, and S. Agewall, Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis, 2010. 52(5): p. 410-28.
39. Li, X. and J.F. Wu, Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Pat Anticancer Drug Discov, 2010. 5(2): p. 109-41.
40. Chen, Y.S., et al., HSP40 co-chaperone protein Tid1 suppresses metastasis of head and neck cancer by inhibiting Galectin-7-TCF3-MMP9 axis signaling. Theranostics, 2018. 8(14): p. 3841-3855.
41. Li, W., et al., Golgi phosphoprotein 3 regulates metastasis of prostate cancer via matrix metalloproteinase 9. Int J Clin Exp Pathol, 2015. 8(4): p. 3691-700.
42. Guo, J., et al., Effects of exposure to benzo[a]pyrene on metastasis of breast cancer are mediated through ROS-ERK-MMP9 axis signaling. Toxicol Lett, 2015. 234(3): p. 201-10.
43. Lan, S., et al., Moesin facilitates metastasis of hepatocellular carcinoma cells by improving invadopodia formation and activating beta-catenin/MMP9 axis. Biochem Biophys Res Commun, 2020. 524(4): p. 861-868.