Aprile F, Lorandi R (2019) Cation Exchange Capacity in Tropical Soils. Lambert Academic Publishing
Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314. https://doi.org/10.1111/nph.12959
Bélanger N, Collin A, Ricard-Piché J, et al (2019) Microsite conditions influence leaf litter decomposition in sugar maple bioclimatic domain of Quebec. Biogeochemistry 145:107–126. https://doi.org/10.1007/s10533-019-00594-1
Benbow ME, Barton PS, Ulyshen MD, et al (2019) Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr 89:e01331. https://doi.org/10.1002/ecm.1331
Berg B (2018) Decomposing litter; limit values; humus accumulation, locally and regionally. Appl Soil Ecol 123:494–508. https://doi.org/10.1016/j.apsoil.2017.06.026
Berg B (2014) Decomposition patterns for foliar litter – A theory for influencing factors. Soil Biol Biochem 78:222–232. https://doi.org/10.1016/j.soilbio.2014.08.005
Berg B, McClaugherty C (2014) Plant Litter. Springer Berlin Heidelberg, Berlin, Heidelberg
Berkelmann D, Schneider D, Engelhaupt M, et al (2018) How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.02381
Borders BD, Pushnik JC, Wood DM (2006) Comparison of leaf litter decomposition rates in restored and mature riparian forests on the Sacramento River, California. Restor Ecol 14:308–315. https://doi.org/10.1111/j.1526-100X.2006.00133.x
Bradford MA, Berg B, Maynard DS, et al (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238. https://doi.org/10.1111/1365-2745.12507
Bradford MA, Ciska GF, Bonis A, et al (2017) A test of the hierarchical model of litter decomposition. Nat Ecol Evol 1:1836–1845. https://doi.org/10.1038/s41559-017-0367-4
Cotrufo MF, Wallenstein MD, Boot CM, et al (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. https://doi.org/10.1111/gcb.12113
Duddigan S, Shaw LJ, Alexander PD, Collins CD (2020) Chemical underpinning of the Tea Bag Index: an examination of the decomposition of tea leaves. Appl Environ Soil Sci 2020:. https://doi.org/10.1155/2020/6085180
Embrapa (1997) Manual de Métodos de Análise de Solo. Emprapa, Rio de Janeiro
Ferrari AL, Vecchia FADS, Colabone RDO (2012) Tendência e variabilidade anuais da temperatura e da pluviosidade em Pirassununga-SP. Rev Bras Climatol 10:30–46. https://doi.org/10.5380/abclima.v10i1.30585
Grace JB (2006) Structural Equation Modeling and Natural Sstems. Cambridge University Press, New York
Hooper D, Coughlan J, Mullen M (2008) Structural equation modelling: guidelines for determining model fit. Electron J Bus Res Methods 6:53–60
Keuskamp JA, Dingemans BJJ, Lehtinen T, et al (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075. https://doi.org/10.1111/2041-210X.12097
Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy, Ecol Environ 2:236–249. https://doi.org/10.1007/s40974-017-0064-9
Lajtha K, Bowden RD, Crow S, et al (2018) The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Sci Total Environ 640–641:1112–1120. https://doi.org/10.1016/j.scitotenv.2018.05.388
Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier
Lukumbuzya TK, Fyles JW, Côté B (1994) Effects of base-cation fertilization on litter decomposition in a sugar maple forest in southern Quebec. Can J For Res 24:447–452. https://doi.org/10.1139/x94-061
Manzoni S, Piñeiro G, Jackson RB, et al (2012) Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates. Soil Biol Biochem 50:66–76. https://doi.org/10.1016/j.soilbio.2012.02.029
Mayer M, Matthews B, Rosinger C, et al (2017) Tree regeneration retards decomposition in a temperate mountain soil after forest gap disturbance. Soil Biol Biochem 115:490–498. https://doi.org/10.1016/j.soilbio.2017.09.010
Metzger JC, Wutzler T, Dalla Valle N, et al (2017) Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol Process 31:3783–3795. https://doi.org/10.1002/hyp.11274
Muñoz Mazón M, Klanderud K, Finegan B, et al (2020) How forest structure varies with elevation in old growth and secondary forest in Costa Rica. For Ecol Manage 469:118191. https://doi.org/10.1016/j.foreco.2020.118191
Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier Academic Press, London
Nunes FP, Pinto MTC (2007) Produção de serapilheira em mata ciliar nativa e reflorestada no alto São Francisco, Minas Gerais. Biota Neotrop 7:97–102. https://doi.org/10.1590/S1676-06032007000300011
Oliveira RAC, Marques R, Marques MCM (2019) Plant diversity and local environmental conditions indirectly affect litter decomposition in a tropical forest. Appl Soil Ecol 134:45–53. https://doi.org/10.1016/j.apsoil.2018.09.016
Osman KT (2013) Nutrient Dynamics in Forest Soil. In: Forest Soils: Properties and Management. Springer, Cham, pp 97–121
Ottermanns R, Hopp PW, Guschal M, et al (2011) Causal relationship between leaf litter beetle communities and regeneration patterns of vegetation in the Atlantic rainforest of Southern Brazil (Mata Atlântica). Ecol Complex 8:299–309. https://doi.org/10.1016/j.ecocom.2011.06.001
Parron LM, Bustamante MMC, Markewitz D (2011) Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry 105:89–104. https://doi.org/10.1007/s10533-010-9537-z
Pausas JG, Bond WJ (2020) On the three majorrecycling pathways in terrestrial ecosystems. Trends Ecol Evol in press. https://doi.org/10.1016/j.tree.2020.04.004
Petraglia A, Cacciatori C, Chelli S, et al (2019) Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil 435:187–200. https://doi.org/10.1007/s11104-018-3889-x
R Core Team (2018) R: A language and environment for statistical computing. In: R Found. Stat. Comput. Vienna, Austria. URL https//www.R-project.org/. url: http://www.R–project.org
Raij B van, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas
Rodrigues PMS, Schaefer CEGR, De Oliveira Silva J, et al (2018) The influence of soil on vegetation structure and plant diversity in different tropical savannic and forest habitats. J Plant Ecol 11:226–236. https://doi.org/10.1093/jpe/rtw135
Rolim G de S, Camargo MBP de, Lania DG, Moraes JFL de (2007) Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de são Paulo. Bragantia 66:711–720. https://doi.org/10.1590/S0006-87052007000400022
Rosseel Y (2012) lavaan: An R Package for Structural Equation Modeling. J Stat Softw 48:1–36
Rot BW, Naiman RJ, Bilby RE (2000) Stream channel configuration, landform, and riparian forest structure in the Cascade Mountains, Washington. Can J Fish Aquat Sci 57:699–707. https://doi.org/10.1139/f00-002
Saint-Laurent D, Arsenault-Boucher L (2020) Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol. Geoderma 358:113976. https://doi.org/10.1016/j.geoderma.2019.113976
Sayer EJ, Banin LF (2016) Tree Nutrient Status and Nutrient Cycling in Tropical Forest—Lessons from Fertilization Experiments. In: Goldstein G, Santiago LS (eds) Tropical Tree Physiology. Springer International Publishing, pp 275–297
Sayer EJ, Rodtassana C, Sheldrake M, et al (2020) Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest. Adv Ecol Res 62:173–223. https://doi.org/10.1016/bs.aecr.2020.01.002
Schoenholtz S., Miegroet HV, Burger J. (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manage 138:335–356. https://doi.org/10.1016/S0378-1127(00)00423-0
Setälä H, Marshall VG, Trofymow JA (1996) Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Biol Biochem 28:1661–1675. https://doi.org/10.1016/S0038-0717(96)00252-0
Silva-Sánchez A, Soares M, Rousk J (2019) Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biol Biochem 134:25–35. https://doi.org/10.1016/j.soilbio.2019.03.008
Soares JAH, Souza ALT de, Pestana LF de A, Tanaka MO (2020) Combined effects of soil fertility and vegetation structure on early decomposition of organic matter in a tropical riparian zone. Ecol Eng 152:105899. https://doi.org/10.1016/j.ecoleng.2020.105899
Souza ALT, Fonseca DG, Liborio RA, Tanaka MO (2013) Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. For Ecol Manage 298:12–18. https://doi.org/10.1016/j.foreco.2013.02.022
Spielvogel S, Prietzel J, Kögel-Knabner I (2016) Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma 267:112–122. https://doi.org/10.1016/j.geoderma.2015.12.001
Wachendorf C, Piepho H-P, Beuschel R (2020) Determination of litter derived C and N in litterbags and soil using stable isotopes prevents overestimation of litter decomposition in alley cropping systems. Pedobiologia (Jena) 81–82:150651. https://doi.org/10.1016/j.pedobi.2020.150651
Wekesa C, Kirui BK, Maranga EK, Muturi GM (2019) Variations in forest structure, tree species diversity and above-ground biomass in edges to interior cores of fragmented forest patches of Taita Hills, Kenya. For Ecol Manage 440:48–60. https://doi.org/10.1016/j.foreco.2019.03.011
Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642
Wiesmeier M, Urbanski L, Hobley E, et al (2019) Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333:149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
Woodward KB, Fellows CS, Mitrovic SM, Sheldon F (2015) Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel, Murray-Darling Basin, Australia. Agric Ecosyst Environ 205:1–8. https://doi.org/10.1016/j.agee.2015.02.019
Yeong KL, Reynolds G, Hill JK (2016) Leaf litter decomposition rates in degraded and fragmented tropical rain forests of Borneo. Biotropica 48:443–452. https://doi.org/10.1111/btp.12319
Zhou Z, Wang C, Luo Y (2018) Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Glob Ecol Biogeogr 27:110–124. https://doi.org/10.1111/geb.12663