Bifulco A, Parida D, Salmeia KA, Nazir R, Gaan S (2020) Fire and mechanical properties of DGEBA-based epoxy resin cured with a cycloaliphatic hardener: Combined action of silica, melamine and DOPO-derivative. Materials & design 65: 108862-108871. https://doi. org/ 10.1016/j.matdes.2020.108862
Bin Y, Weiyi X, Wenwen G, Shuilai Q, Xin W, Siuming L, Yuan H (2016) Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. Journal of Materials Chemistry A 4: 7330-7340. https://doi.org/10.1039/C6TA01565D
Dash, M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science 36(8): 981-1014. https://doi.org/10.1016/j. progpolymsci.2011.02.001
Dongxue Y, Lingfeng L, Binling C, Shuxian S, Jun N, Guiping M (2019) Functionalized chitosan electrospun nanofifiber membranes for heavy-metal removal. Polymer 163: 74-85. https://doi. org/10.1016/j.polymer.2018.12.046
Hao T, ZongMin Z, Rui C, JunJie W, Hong Z (2019) Synthesis of DOPO-based pyrazine derivative and its effect on flame retardancy and thermal stability of epoxy resin. Polym Adv Technol 30: 2331-2339. https://doi.org/10.1002/pat.4674
Hao T, Hong Z (2019) A novel nitrogen, phosphorus, and boron ionic pair compound toward fire safety and mechanical enhancement effect for epoxy resin. Polymers for Advanced Technologies 31: 1-13. https://doi.org/10.1002/pat.4823
Haihua Y, Xiuhang X, Yunfei X, Mingzhen P, Nighat Z, Bo P, Anis UR, Min W, Henmei N (2020) Synthesis of a novel modified chitosan as an intumescent flame retardant for epoxy resin. e-Polymers 20: 303-316. https://doi.org/10.1515/epoly-2020-0036
Haihua Y, Yunfei X, Xiuhang X, Nighat Z, Min W, Henmei N (2020) Preparation of organic-inorganic intumescent flame retardant with phosphorus, nitrogen and silicon and its flame retardant effect for epoxy resin. Journal of Applied Polymer Science 137: 49256-49268. https://doi. org/10.1002/app.49256
Ionela DC, Diana S, Tachita VB, Corneliu H, Adina C, Gabriela L, Celia GL, Mónica FS, Vicente FP, Maria DRS (2014) A straightforward, eco-friendly and cost-effective approach towards flame retardant epoxy resins. Journal of Materials Chemistry A 2: 16230-16241. https://doi.org /10.1039/c4ta03197k
Jellinek H, Takada K (1977) Toxic gas evolution from polymers: Evolution of hydrogen cyanide from polyurethanes. Journal of Polymer Science: Polymer Chemistry Edition 15: 2269-2288. https://doi.org/10.1002/pol.1977.170150917
Kun W, Lei S, Yuan H, Hongdian L, Baljinder KK, Everson K (2009) Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat 65: 490-497. https://doi.org/10.1016/j.porgcoat.2009.04.008
Khalifah A S, Sabyasachi G (2015) An Overview of Some Recent Advances in DOPO derivatives: Chemistry and Flame Retardant Applications. Polymer Degradation and Stability 113: 119-134. https://doi.org/10.1016/j.polymdegradstab.2014.12.014
Lijun Q, Longjian Y, Yong Q, Shuren Q (2011) Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer 52(24): 5486-5493. https://doi.org/10.1016/j.polymer.2011.09.053
Levchik S, Piotrowski A, Weil E, Yao Q (2005) New developments in flame retardancy of epoxy resins. Polym Degrad Stab 88: 57-62. https://doi.org/10.1016/j.polymdegradstab.2004.02.019
Lin L, Xiaoming S, Zheng Z, Xiaolin L, Licong J, Kai H, Shuai Z (2020) Synergistic Fire Hazard Effect of a Multifunctional Flame Retardant in Building Insulation Expandable Polystyrene through a Simple Surface-Coating Method. ACS Omega: 5799-5807. https://doi. org/10.1021/acsomega.9b03541
Mauerer O (2005) New reactive, halogen-free flame retardant system for epoxy resins. Polymer Degradation and Stability 88: 70-73. https://doi.org/10.1016/j.polymdegradstab.2004.01.027
Mengmeng Z, Wenjing Z, Xia Z, Zhiwei L, Laigui Y, Xiaohong, Zhijun Z (2021) Nonfuoride‑modifed halloysite nanotube‑based hybrid: potential for acquiring super‑hydrophobicity and improving fame retardancy of epoxy resin. Journal of Nanostructure in Chemistry 1950154:1-15. https://doi.org/10.1007/s40097-020-00371-9
Mengmeng Z, Yamin C, Zhiwei L, Xiaohong L, Laigui Y, Zhijun Z (2019) Biomass Chitosan-Induced Fe3O4 Functionalized Halloysite Nanotube Composites: Preparation, Characterization and Flame-Retardant Performance. NANO 14: 1950154-1950169. https://doi.org/10.1142/S1793 292019501546
Prabhakar MN, Song JI (2020) Influence of chitosan-centered additives on flammable properties of vinyl ester matrix composites. Cellulose 27(4): 8087-8103. https://doi.org/10.1007/ s10570-020-03313-4
Pooja D, Sonu G, Ajai KS (2018) Base free N-alkylation of anilines with ArCH2OH and transfer hydrogenation of aldehydes/ketones catalyzed by the complexes of η5-Cp*Ir(III) with chalcogenated Schiff bases of anthracene-9-carbaldehyde. DaltonTrans 47: 3764-3774. https://doi.org/10.1039/C7DT04326K
Qinghong K, Yi Z, Xin Z, Bing X, Yanzhu Y, Junyu Z, Feng Z, Jia Z, Junhao Z (2019) Functionalized Montmorillonite Intercalation Iron Compounds for Improving Flame Retardancy of Epoxy Resin Nanocomposites. Journal of Nanoscience and Nanotechnology 19: 5803-5809. https://doi.org/ 10.1166/jnn.2019.16540
Rui C, Zijin L, XueJun Y, Hao T, Yuan Z, Hong Z (2020) Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin. Carbohydrate Polymers 245: 116530-116537. https://doi.org/10.1016/j.carbpol.2020.116530
Schartel B, Braun U, Balabanovich AI, Artner J, Ciesielski M, Döring M, Perez RM, Sandler JKW, Altstädt V (2008) Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener. European Polymer Journal 44: 704-715. https://doi.org/10.1016/j.eurpolymj.2008.01.017
Sergei VL, Edward DW (2004) Thermal decomposition, combustion and flameretardancy of epoxy resins - a review of the recent literature. Polym. Int 53: 1585-1610. https://doi.org/10.1002/pi.1473
Schartel B, Hull TH (2007) Development of fire-retarded materials-Interpretation of cone calorimeter data. Fire Mater 31: 327-354. https://doi.org/10.1002/fam.949
Shuang Y, Jun W, Siqi H, Mei W, Liufeng C (2015) Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. Industrial & Engineering Chemistry Research 54: 7777-7786. https://doi.org/10.1021/acs.iecr.5b02026
Shuang H, Lei S, Haifeng P, Yuan H (2012) Thermal Properties and Combustion Behaviors of Chitosan Based Flame Retardant Combining Phosphorus and Nickel. Ind. Eng. Chem. Res 51: 3663-3669. https://doi.org/10.1021/ie2022527
Shanglin J, Lijun Q, Yong Qiu, Yajun C, Fei X (2019) High-efficiency flame retardant behavior of bi-DOPO compound with hydroxyl group on epoxy resin, Polymer Degradation and Stability 166: 344-352. https://doi.org/10.1016/j.polymdegradstab.2019.06.024
Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731-1742. https://doi.org/10.1016/j.carbon.2005.02.018
Shigehiro H, Min Z, Hideki Y, Yoshiharu K, Kojiro M, Masuo N (2003) Chemical Modification and some Aligned Composites of Chitosan in a Filament State. Macromolecular Bioscience 3: 620-628. https://doi.org/10.1002/mabi.200350028
Santosh K, Nidhi N, Ghosh T, Dutta PK, Yadav RS, Pandey AC (2009) Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film. Journal of Applied Polymer Science 115: 3056-3062. https://doi.org/10.1002/app.31385
Tentu NR, Imad H, Ji EL, Akshay K, Bon HK (2019) Enhanced Thermal Properties of Zirconia Nanoparticles and Chitosan-Based Intumescent Flame Retardant Coatings. Applied Sciences 9: 3464-3479. https://doi.org/10.3390/app9173464
Xiaohui S, Li C, Bowen L, Jiawei L, Yingjun X, Yuzhong W (2018) Carbon Fibers Decorated by Polyelectrolyte Complexes Toward Their Epoxy Resin Composites with High Fire Safety. Chinese Journal of Polymer Science 36: 1375-1384. https://doi.org/10.1007/s10118-018-2164-1
Xin W, Lei S, Weiyi X, Hongdian L, Yuan H (2011) A effective flame retardantfor epoxy resins based on poly (DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate). Materials Chemistry and Physics 125: 536-541. https://doi.org/10.1016/j.matchemphys.2010.10.020
Xiaoyi H, Xiaoyun M, Huaitian B, Xiaoyuan Y, Gangbiao J, Minghua Z (2011) Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydrate Research 346: 1232-1240. https://doi.org/10.1016/j.carres.2011.04.012
Xiaoyu C, Xiaodong G, Jun S, Sheng Z (2017) The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Carbohydrate Polymer 157: 1586-1593. https://doi.org/10.1016/j.carbpol.2016.11.035
Xiaodong L, Xiaoyu G, Jun S, Sheng Z (2017) Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydrate Polymers 167: 356-363. https://doi.org/10.1016/j.carbpol.2017.03.011
Xin W, Yuan H, Lei S, Hongyu Y, Weiyi X, Hongdian L (2011) Synthesis and characterization of a DOPO-substituted organophosphorus oligomer and its application in flame retardant epoxy resins. Progress in Organic Coatings 71: 72-82. https://doi.org/10.1016/j.porgcoat.2010.12.013
Xin W, Yuan H, Lei S, Weiyi X, Hongdian L, Pin L, Ganxin J (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51: 2435-2445. https://doi.org/10.1016/j.polymer.2010. 03.053
Xin W, Yuan H, Lei S, Weiyi X, Hongdian L (2011) Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS - ScienceDirect. Journal of Analytical and Applied Pyrolysis 92: 164-170. https:// doi.org/10.1016/j.jaap.2011.05.006
Xin W, Yuan H, Lei S, Weiyi X, Hongdian L (2011) Preparation, mechanical properties, and thermal degradation of flame retarded epoxy resins with an organophosphorus oligomer. Polymer Bulletin, 67: 859-873. https://doi.org/10.1007/s00289-011-0473-4
Xin W, Yuan H, Lei S, Weiyi X, Hongdian L, Pin L, Ganxin J (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51(11): 2435-2445. https://doi.org/10.1016/j.polymer. 2010. 03.053
Yun L, Quanquan W, Zhiming J, Chuanjie Z, Zhongfang L, Huaqi C, Ping Z (2018) Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J Anal Appl Pyrol 135: 289-298. https://doi.org/ 10.1016/j.jaap.2018.08.024
Zhi L, Alejandro JG, Vignesh BH, Deyi W (2018) Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Compos B Eng 138: 101-112. https://doi.org/10.1016/j.compositesb.2017.11.001
Zongmin Z, Ke S, Luoxin W, Junsheng W (2019) Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy. Polymer Degradation and Stability 167:179-188. https://doi.org/10.1016/j. polymdegradstab.2019.07.005
Zhiquan C, Juncheng J, Yuan Y, Gang C,Tingting C, Qingwu Z (2020) Layer-by-layer assembled bagasse to enhance the fire safety of epoxy resin: A renewable environmental friendly flame retardant. Appl Polym Sci 138: 50032-50046. https://doi.org/10.1002/app.50032
Zongmin Z, Panlong L, Hao W, Luoxin W, Bin Y, Feihua Y (2020) A facile one-step synthesis of highly efficient melamine salt reactive flame retardant for epoxy resin. Journal of Materials Science 55: 12836-12847. https://doi.org/10.1007/s10853-020-04935-6