Chen, G. O., Beski, S. S. M., Choct, M., et al. (2015). Novel probiotics: Their effects on growth performance, gut development, microbial community and activity of broiler chickens. Animal Nutrition, 1(03), 104-111. doi:10.1016/j.aninu.2015.07.003
Collins, S. M., Surette, M., & Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology, 10(11), 735-742. doi:10.1038/nrmicro2876
Deguchi, S., Ohashi, T., & Sato, M. (2006). Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. Journal of Biomechanics, 39(14), 2603-2610. doi:10.1016/j.jbiomech.2005.08.026
Delgado-Andrade, C., Silvia, P. D. L. C., Jesus Peinado, M., et al. (2017). Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products. Food Research International, 100(pt.1), 134-142. doi:10.1016/j.foodres.2017.06.067
Edgar, Robert, & C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics. doi:10.1093/bioinformatics/btq461
Edgar, R. C., Haas, B. J., Clemente, J. C., et al. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194-2200. doi:10.1093/bioinformatics/btr381
Friedman, J., & Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey Data. PLOS Computational Biology, 8(9). doi:10.1371/journal.pcbi.1002687
Gerritsen, J., Hornung, B., Renckens, B., et al. (2017). Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ, 5(9), 3698. doi:10.7717/peerj.3698
Guo, W., Pan, Y., Li, L., et al. (2018). Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food & Function, 9(6), 3419-3431. doi:10.1039/c8fo00836a
Hildebrand, F., Nguyen, T. L. A., Brinkman, B. M., et al. (2013). Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biology, 14(1), 1-15. doi:10.1186/gb-2013-14-1-r4
Kim, H. B., Borewicz, K., White, B. A., et al. (2011). Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Veterinary Microbiology, 153(1), 124-133. doi:10.1016/j.vetmic.2011.05.021
Kim, H. B., & Isaacson, R. E. (2016). Salmonella in Swine: Microbiota Interactions. Annual Review of Animal Biosciences, 5(1). doi:10.1146/annurev-animal-022516-022834
Kim, K., Larsen, N. J., Short, T. H., et al. (2000). A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome, 11(2), 131-135. doi:10.1007/s003350010025
Kuczynski, J., Stombaugh, J., Walters, W. A., et al. (2011). Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. Current Protocols in Bioinformatics, 36(1). doi:10.1002/9780471729259.mc01e05s27
Langille, M. G. I., Zaneveld, J., Caporaso, J. G., et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814-821. doi:10.1038/nbt.2676
Leser, T. D., Amenuvor, J. Z., Jensen, T. K., et al. (2002). Culture-independent analysis of gut bacteria : the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology, 68(2), 673-690. doi:10.1128/AEM.68.2.673-690.2002
Meehan, C. J., & Beiko, R. G. (2014). A Phylogenomic View of Ecological Specialization in the Lachnospiraceae, a Family of Digestive Tract-Associated Bacteria. Genome Biology & Evolution(3), 3. doi:10.1093/gbe/evu050
Mirelahi, M., Soleymanianzad, S., Dokhani, S. H., et al. (2009). Investigation of Acid and Bile Tolerance of Native Lactobacilli Isolated from Fecal Samples and Commercial Probiotics by Growth and Survival Studies. Iranian Journal of Biotechnology, 7(4), 233-240.
Parks, D. H., Tyson, G. W., Hugenholtz, P., et al. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123-3124. doi:10.1093/bioinformatics/btu494
Ramayocaldas, Y., Mach, N., Lepage, P., et al. (2016). Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. The ISME Journal, 10(12), 2973-2977. doi:10.1038/ismej.2016.77
Ruas-Madiedo, Patricia, Delgado, et al. (2017). Bacterial diversity of the Colombian fermented milk "Suero Costeno" assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiology.
Schloss, P. D., Westcott, S. L., Ryabin, T., et al. (2009). Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75(23), 7537-7541. doi:10.1128/AEM.01541-09
Serena, A., Hedemann, M. S., & Knudsen, K. E. B. (2008). Influence of dietary fiber on luminal environment and morphology in the small and large intestine of sows. Journal of Animal Science, 86(9), 2217-2227. doi:10.2527/jas.2006-062
Shimosato, Takeshi, Shigemori, et al. (2015). Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes & Environments. doi:10.1264/jsme2.ME14176
Su, X.-L., Tian, Q., Zhang, J., et al. (2014). Acetobacteroides hydrogenigenes gen. nov., sp nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. International Journal of Systematic & Evolutionary Microbiology, 64(Pt 9), 2986. doi:10.1099/ijs.0.063917-0
Wei, T., & Simko, V. (2013). corrplot: Visualization of a Correlation Matrix. Mmwr Morbidity & Mortality Weekly Report, 52(12), 145-151.
Xin, J., Zeng, D., Wang, H., et al. (2020). Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets. Probiotics and Antimicrobial Proteins, 12(1), 184-193. doi:10.1007/s12602-018-9511-y
Yang, H., Huang, X., Fang, S., et al. (2016). Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Scientific Reports, 6(1), 27427-27427. doi:10.1038/srep27427
Yang, L., Bian, G., Su, Y., et al. (2014). Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian-australasian Journal of Animal Sciences, 27(6), 898-906. doi:10.5713/ajas.2013.13621
Yang, W.-Y., Lee, Y., Lu, H., et al. (2019). Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS ONE, 14(5), e0205784. doi:10.1371/journal.pone.0205784
Yin, J., Li, Y., Han, H., et al. (2018). Long-term effects of lysine concentration on growth performance, intestinal microbiome, and metabolic profiles in a pig model. Food & Function, 9(8), 4153-4163. doi:10.1039/c8fo00973b
Yoshiaki, Sato, Yasutoshi, et al. (2019). Effects of Dietary Supplementation With Enterococcus faecium and Clostridium butyricum, Either Alone or in Combination, on Growth and Fecal Microbiota Composition of Post-weaning Pigs at a Commercial Farm. Frontiers in veterinary science. doi:10.3389/fvets.2019.00026
Zhang, J., Guo, Z., Xue, Z., et al. (2015). A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. The ISME Journal, 9(9), 1979-1990. doi:10.1038/ismej.2015.11
Zhao, W., Wang, Y., Liu, S., et al. (2015). The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE, 10(2). doi:10.1371/journal.pone.0117441