Andrieux B, Beguin J, Bergeron Y, Grondin P, Paré D (2018) Drivers of postfire soil organic carbon accumulation in the boreal forest. Glob Change Biol 24:4797-4815
Andrieux B, Paré D, Beguin J, Grondin P, Bergeron Y (2020) Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence. Soil 6:195–213
Antonine ME (2004) An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist 107:82-87
Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, Nelson PN, Bird M, Kantzas E, Taylor LL, Sarkar B, Kelland M, DeLucia E, Kantola I, Müller C, Rau G, Hansen J (2018) Farming with crops and rocks to address global climate, food and soil security. Nat Plants 4:138-147
Ben Hamman O, de la Rubia T, Martínez J (1999) The effect of manganese on the production of Phanerochaete flavido-alba ligninolytic peroxidases in nitrogen limited cultures. FEMS Microbiol Lett 177:137-142
Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13-22.
Berg B, Davey MP, De Marco A, Emmett B, Faituri M, Hobbie SE, Johansson M-B, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, Virzo De Santo A (2010) Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100:57-73
Berg B, Erhagen B, Johansson M-B, Nilsson M, Stendahl J, Trum F, Vesterdal L (2015) Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems – A review. For Ecol Manag 358:248-260
Berg B, Johansson M-B, Ekbohm G, McClaugherty C, Rutigliano F, De Santo AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot 74:659-672
Berg B, McClaugherty C (2014) Plant Litter. DOI: 10.1007/978-3-642-38821-7_1.
Binkley D, Cromack K Jr, Baker DD (1994) Nitrogen fixation by red alder: biology, rates, and controls. In: Hibbs DE, DeBell DS, Tarrant RF (eds) The Biology and Management of Red Alder. Oregon State University Press, pp 57–72
Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD (2014) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256
Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210-217
Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriology 172:3125-3130
Brown KJ, Hebda RJ (2002) Origin, development, and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada. Can J For Res 32:353–372
Buswell JA, Cai Y, Chang S (1995) Effect of nutrient nitrogen and manganese on manganese peroxidase and lactase production by Lentinula (Lentinus) edodes. FEMS Microbiol Lett 128:81-88
Buurman P, Jongmans AG (2005) Podzolisation and soil organic matter dynamics. Geoderma 125:71-83
Carpenter DN, Bockheim JG, Reich PF (2014). Soils of temperate rainforests of the North American Pacific Coast. Geoderma 230-231:250-264
Cohen R, Hadar Y, Yarden O (2001) Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol 3:312-322
Craig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP (2018) Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob Change Biol 24:3317-3330
Davey MP, Berg B, Emmett BA, Rowland P (2007) Decomposition of oak leaf litter is related to initial litter Mn concentrations. Can J Bot 85:16-24
Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Muñoz C, Boudin M, Venegas EZ, Boeckx P (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8:780-785
Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS (2011) Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6:e20421
Entwistle EM, Romanowicz KJ, Argiroff WA, Freedman ZB, Morris JJ, Zak DR (2018a) Anthropogenic N deposition alters the composition of expressed class II fungal peroxidases. Appl Environ Microbiol 84:e02816-17
Entwistle EM, Zak DR, Argiroff WA (2018b) Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. Ecol Monogr 88:225–244
Frey SD (2019) Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237-59
Gettemy JM, Ma B, Alic M, Gold MH (1998) Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl Environ Microbiol 64:569-574
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253-268
Jastrow D, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Chang 80:5-23
Johansson T, Nyman PO, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol 68:2077–2080
Jones ME, LaCroix RE, Zeigler J, Ying SC, Nico PS, Keiluweit M (2020) Enzymes, manganese, or iron? Drivers of oxidative organic matter decomposition in soils. Environ Sci Tech 54:14114-14123
Jones ME, Nico PS, Ying S, Regier T, Thieme J, Keiluweit M (2018) Manganese-driven carbon oxidation at oxic–anoxic interfaces. Environ Sci Tech 52:12349–12357
Keiluweit M, Nico P, Harmon ME, Mao J, Pett-Ridge J, Kleber M (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Nat Academy Sci 112:E5253-E5260
Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Krüger D, Zak DR, Marmeisse R, Vandenbol M, Hofrichter M (2014) Widespread occurrence of expressed fungal secretory peroxidases in forest soils. PloS ONE 9:e95557
Kranabetter JM (2019) Increasing soil carbon content with declining soil manganese in temperate rainforests: is there a link to fungal Mn? Soil Biol Biochem 128:179-181
Kranabetter JM, Banner A, de Groot A (2005) An assessment of phosphorus limitations to soil nitrogen availability across forest ecosystems of north coastal British Columbia. Can J For Res 35:530-540
Kranabetter JM, Harman-Denhoed R, Hawkins BJ (2019) Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C:N:P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. New Phyt 221:482-492
Kranabetter JM, LePage P, Banner A (2013) Management and productivity of cedar-hemlock-salal scrub forests on the north coast of British Columbia. For Ecol Manag 308:161-168
Kranabetter JM, Sholinder A, de Montigny L (2020) Contrasting conifer species productivity in relation to soil carbon, nitrogen and phosphorus stoichiometry of British Columbia perhumid rainforests. Biogeosciences 17:1247-1260
Kyaschenko J, Clemmensen KE, Karltun E, Lindahl B (2017) Below-ground organic matter accumulation along a boreal fertility gradient relates to guild interaction within fungal communities. Ecol Lett 20:1546-1555
Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1-22
Lavallee JM, Soong JL, Cotrufo MF (2020) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob Chang Biol 26:261–273.
Lindo Z, Whiteley JA (2011) Old trees contribute bio-available nitrogen through canopy bryophytes. Plant Soil 342:141-148
Maaroufi NI, Nordin A, Palmqvist K, Hasselquist NJ, Forsmark B, Rosenstock NP, Wallander H, Gundale MJ (2019) Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Glob Chang Biol 25:2900-2914
Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau J-P, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vangeulova EI, Vesterdal L (2020) Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For Ecol Manag 466:118-127
McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82:290–297
McNicol G, Bulmer C, D’Amore D, Sanborn P, Saunders S, Giesbrecht I, Arriola S-G, Bidlack A, Butman D, Buma B (2019) Large, climate-sensitive soil carbon stocks mapped with pedology informed machine learning in the North Pacific coastal temperate rainforest, Environ Res Lett 14:014004
Meeds J, Kranabetter JM, Zigg I, Dunn D, Miros F, Shipley P, Jones MD (2021). Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J 15:1478-1489
Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes. J Mol Evol 66:243–257
Morrison EW, Frey SD, Sadowsky JJ, van Diepen LTA, Thomas WK, Pringle A (2016) Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol 23:48-57
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan
Perakis SS, Matkins JJ, Hibbs DE (2012) Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere 3:54
Perakis SS, Pett-Ridge JC (2019) Nitrogen-fixing red alder trees tap rock-derived nutrients. Proc Nat Acad Sci 116:5009-5014
Rasmussen C, Heckman K, Wieder WR, Keiluweit M, Lawrence CR, Berhe AA, Blankinship JC, Crow SE, Druhan JL, Hicks Pries CE, Marin-Spiotta E, Plante AF, Schädel C, Schimel JP, Sierra CA, Thompson A, Wagai R (2018) Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137:297–306
Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Nat Acad Sci 111:9923-9928
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Sajedi T, Prescott CE, Seely B, Lavkulich LM (2012) Relationships among soil moisture, aeration and plant communities in natural and harvested coniferous forests in coastal British Columbia, Canada. J Ecol 100:605-618
Sanborn P, Lamontagne L, Hendershot W (2011) Podzolic soils of Canada: genesis, distribution, and classification. Can J Soil Sci 91:843-880
SAS Institute Inc (2021) SAS/STAT® User’s Guide. Cary, NC
Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool, Carbon Manag 5:81-91
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 1478:49-56
Soil Classification Working Group (1998) The Canadian System of Soil Classification, Agriculture and Agri-Food Canada Publication 1646 (Revised), Ottawa, Canada
Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotech 54:819–825
Stendahl J, Berg B, Lindahl BD (2017) Manganese availability is negatively associated with carbon storage in northern coniferous forest humus layers. Sci Reports 7:15487
Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD (2018) Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J 12:2187-2197
Subedi P, Jokela EJ, Vogel JG, Bracho R, Inglett KS (2021) The effects of nutrient limitations on microbial respiration and organic matter decomposition in a Florida Spodosol as influenced by historical forest management practices. For Ecol Manag 479:118592
Sun OJ, Campbell J, Law BE, Wolf V (2004) Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Glob Chang Biol 10:1470-1481
Sun T, Cuib Y, Berg B, Zhang Q, Dong L, Wub Z, Zhang L (2019) A test of manganese effects on decomposition in forest and cropland sites. Soil Biol Biochem 129:178–183
Talbot JM, Martin F, Kohler A, Herissat B, Peay KG (2015) Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol Biochem 88:441-456
Taylor MK, Lankau RA, Wurzburger N (2016) Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. J Ecol 104:1576–1584
Trum F, Titeux H, Cornelis J-T, Delvaux B (2011) Effects of manganese addition on carbon release from forest floor horizons. Can J For Res 41:643-648
Trum F, Titeux H, Ponette Q, Berg B (2015) Influence of manganese on decomposition of common beech (Fagus sylvatica L.) leaf litter during field incubation. Biogeochemistry 125:349–358
van Diepen LTA, Frey SD, Sthultz CM, Morrison EW, Minocha R, Pringle A (2015) Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6:1–16
Vares T, Hatakka A (1997) Lignin-degrading activity and ligninolytic enzymes of different white-rot fungi: effects of manganese and malonate. Can J Bot 75:61-71
Wang Y, Naumann U, Eddelbuettel D, Wilshire J, Warton D (2020) mvabund: Statistical Methods for Analysing Multivariate Abundance Data. R package version 4.1.6. https://CRAN.R-project.org/package=mvabund
Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16-30
Watkinson S, Bebber D, Darrah P, Fricker M, Tlalka M, Boddy L (2006) The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Gadd GM (ed) Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, pp 151-181
Whalen ED, Smith RG, Grandy AS, Frey SD (2018) Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition. Soil Biol Biochem 127:252–263
Worrall JJ, Anagnost SE, Zabel RA (1997) Comparision of wood decay among diverse lignicolous fungi. Mycologia 89:199–219
Zak DR, Argiroff WA, Freedman ZB, Upchurch RA, Entwistle EM, Romanowicz KJ (2019) Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology 100:e02804