[1.] Ma, S., Attarwala, I. Y., & Xie, X. (2019). SQSTM1 / p62 : A Potential Target for
Neurodegenerative Disease [Review-article]. ACS Chemical Neuroscience, 10, 2094–2114.
https://doi.org/10.1021/acschemneuro.8b00516
[2.] Bartolome, F., Esteras, N., Martin-requero, A., & Boutoleau-, C. (2017). impair energy
metabolism through limitation of mitochondrial substrates. Scientific Reports, (November
2016), 1–14. https://doi.org/10.1038/s41598-017-01678-4
[3.] Bitto, A., Lerner, C. A., Nacarelli, T., Crowe, E., Torres, C., & Sell, C. (2014). p62/SQSTM1 at
the interface of aging, autophagy, and disease. Age, 36(3), 1123–1137.
https://doi.org/10.1007/s11357-014-9626-3
[4.] Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., Liu, H. F. (2016). P62 Links
the Autophagy Pathway and the Ubiqutin-Proteasome System Upon Ubiquitinated Protein
Degradation. Cellular and Molecular Biology Letters, 21(1), 1–14.
https://doi.org/10.1186/s11658-016-0031-z
[5.] Matsumoto, G., Shimogori, T., Hattori, N., & Nukina, N. (2015). TBK1 controls
autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1
phosphorylation. Human Molecular Genetics, 24(15), 4429–4442.
https://doi.org/10.1093/hmg/ddv179
[6.] Liang, X., & Guan, X. (2017). Frontiers in Laboratory Medicine p62 / SQSTM1 : A potential
molecular target for treatment of atherosclerosis. Frontiers in Laboratory Medicine, 1(2), 104
- https://doi.org/10.1016/j.flm.2017.06.007
[7.] Hou, B., Wang, G., Gao, Q., Wei, Y., Zhang, C., & Wang, Y. (2019). SQSTM1 / p62 losreverses
the inhibitory effect of sunitinib on autophagy independent of AMPK signaling. Scientific
Reports, (June 2018), 1–13. https://doi.org/10.1038/s41598-019-47597-4
[8.] Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter
proteins. Autophagy, 7(3), 279–296. https://doi.org/10.4161/auto.7.3.14487
[9.] Pankiv, S., Hoyvarde Clausen, T., Lamark, T., Brech, A., Brunn, J.-A., Outzen, H., Johansen,
- (2007). p62 / SQSTM1 Binds Directly to Atg8 / LC3 to Facilitate Degradation of Ubiquitinated
Protein Aggregates. J Biol Chem, 282(33), 24131–24145.
https://doi.org/10.1074/jbc.M702824200
[10.] Bartlett, B. J., Isakson, P., Lewerenz, J., Sanchez, H., Kotzebue, R. W., Cumming, R.,Finley,K
- (2011). p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging,
aggregate formation and progressive autophagic defects. Autophagy, 7(6), 572–583.
https://doi.org/10.4161/auto.7.6.14943
[11.] Castro, I P De, Costa, A. C., Celardo, I., Tufi, R., Dinsdale, D., Loh, S. H. Y., & Martins, L. M.
(2013). Drosophila ref (2)P is required for the parkin -mediated suppression of mitochondrial
dysfunction in pink1 mutants. Cell Death and Disease, 4, e873.
https://doi.org/10.1038/cddis.2013.394
[12.] Narendra, D. P., Kane, L. A., Hauser, D. N., Fearnley, I. M., & Youle, R. J.
(2010).p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy;
VDAC1 is dispensable for both. Autophagy, 6(8), 1090–1106.
https://doi.org/10.4161/auto.6.8.13426
[13.] Xiao, B., Deng, X., Lim, G. G. Y., Zhou, W., Saw, W., Dong, Z., Tan, E. (2017). BBA
Molecular Cell Research p62-Mediated mitochondrial clustering attenuates apoptosis induced
by mitochondrial depolarization. BBA - Molecular Cell Research, 1864(7), 1308–1317.
https://doi.org/10.1016/j.bbamcr.2017.04.009
[14.] Castro, I Pimenta De, Costa, A. C., Lam, D., Tufi, R., Fedele, V., Moisoi, N., Martins, L. M.
(2012). Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell
Death and Differentiation, 19, 1308–1316. https://doi.org/10.1038/cdd.2012.5